Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.)

被引:49
|
作者
Hu, Tingzhang [1 ]
Zhu, Shanshan [1 ]
Tan, Lili [1 ]
Qi, Wenhua [2 ]
He, Shuai [1 ]
Wang, Guixue [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ,State & Local Joint Engn Lab Vasc Imp, Chongqing 400030, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Life Sci & Engn, Chongqing 404100, Peoples R China
关键词
Abiotic stresses; Expression pattern; Late embryogenesis abundant protein; OsLEA4; gene; Rice; EMBRYOGENESIS ABUNDANT PROTEINS; ABIOTIC STRESSES; GENE-EXPRESSION; PROLINE ACCUMULATION; CONFERS TOLERANCE; WATER-DEFICIT; LEA PROTEINS; COLD; METABOLISM; MANGANESE;
D O I
10.1016/j.envexpbot.2015.10.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this study, real-time PCR was used to analyze the expression pattern of the OsLEA4 gene in rice, which showed that OsLEA4 was expressed in different organ tissues during different development stages of rice. The expression levels of OsLEA4 in the leaves during the tillering stage and leaves and panicles during the heading stage, the filling stage and the full ripe stage were dramatically increased. Moreover, based on seed germination, growth status and physiological indices, the overexpression of OsLEA4 in transgenic rice plants conferred increased resistance to drought, salt and heavy metal stresses compared with the wild type (WT) plants. After drought, high salinity and heavy metal stresses, the increase in the malondialdehyde content in transgenic plants was less than that in WT, and the increase in the free proline and soluble sugar contents in transgenic plants were greater than those of the WT plants. These results indicated that the OsLEA4 protein contributes to drought, salt and heavy metal tolerance in rice plants. Thus, OsLEA4 is a potential candidate gene for plant genetic modification. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [1] Overexpression of OsRLCK241 confers enhanced salt and drought tolerance in transgenic rice (Oryza sativa L.)
    Zhang, Hui
    Zhai, Niu
    Ma, Xiang
    Zhou, Huina
    Cui, Yanchun
    Wang, Chen
    Xu, Guoyun
    GENE, 2021, 768
  • [2] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    Zeng, De-Er
    Hou, Pei
    Xiao, Fangming
    Liu, Yongsheng
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 24 (01) : 56 - 64
  • [3] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    De-Er Zeng
    Pei Hou
    Fangming Xiao
    Yongsheng Liu
    Journal of Plant Biochemistry and Biotechnology, 2015, 24 : 56 - 64
  • [4] Overexpression of Auxin Binding Protein 57 from Rice (Oryza sativa L.) Increased Drought and Salt Tolerance in Transgenic Arabidopsis thaliana
    Tan, L. W.
    Tan, C. S.
    Zuraida, A. R.
    Hossein, H. M.
    Goh, H. H.
    Ismanizan, I.
    Zamri, Z.
    2ND INTERNATIONAL CONFERENCE ON BIOSCIENCES (ICOBIO), 2018, 197
  • [5] Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.)
    Tang, Lili
    Cai, Hua
    Ji, Wei
    Luo, Xiao
    Wang, Zhenyu
    Wu, Jing
    Wang, Xuedong
    Cui, Lin
    Wang, Yang
    Zhu, Yanming
    Bai, Xi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 71 : 22 - 30
  • [6] Ammonium enhances the tolerance of rice seedlings (Oryza sativa L.) to drought condition
    Li, Yong
    Gao, Yingxu
    Ding, Lei
    Shen, Qirong
    Guo, Shiwei
    AGRICULTURAL WATER MANAGEMENT, 2009, 96 (12) : 1746 - 1750
  • [7] Drought Stress in Rice (Oryza sativa L.)
    Shrestha, Jiban
    RESEARCH ON WORLD AGRICULTURAL ECONOMY, 2022, 3 (01):
  • [8] Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.)
    Ai, Bin
    Chen, Yong
    Zhao, Minmin
    Ding, Gumu
    Xie, Jiankun
    Zhang, Fantao
    GENETIC RESOURCES AND CROP EVOLUTION, 2021, 68 (01) : 87 - 92
  • [9] Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.)
    Bin Ai
    Yong Chen
    Minmin Zhao
    Gumu Ding
    Jiankun Xie
    Fantao Zhang
    Genetic Resources and Crop Evolution, 2021, 68 : 87 - 92
  • [10] Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)
    Fernanda Raquel Martins Abreu
    Beata Dedicova
    Rosana Pereira Vianello
    Anna Cristina Lanna
    João Augusto Vieira de Oliveira
    Ariadna Faria Vieira
    Odilon Peixoto Morais
    João Antônio Mendonça
    Claudio Brondani
    Protoplasma, 2018, 255 : 1751 - 1761