Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.)

被引:49
|
作者
Hu, Tingzhang [1 ]
Zhu, Shanshan [1 ]
Tan, Lili [1 ]
Qi, Wenhua [2 ]
He, Shuai [1 ]
Wang, Guixue [1 ]
机构
[1] Chongqing Univ, Bioengn Coll, Key Lab Biorheol Sci & Technol, Minist Educ,State & Local Joint Engn Lab Vasc Imp, Chongqing 400030, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Life Sci & Engn, Chongqing 404100, Peoples R China
关键词
Abiotic stresses; Expression pattern; Late embryogenesis abundant protein; OsLEA4; gene; Rice; EMBRYOGENESIS ABUNDANT PROTEINS; ABIOTIC STRESSES; GENE-EXPRESSION; PROLINE ACCUMULATION; CONFERS TOLERANCE; WATER-DEFICIT; LEA PROTEINS; COLD; METABOLISM; MANGANESE;
D O I
10.1016/j.envexpbot.2015.10.002
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this study, real-time PCR was used to analyze the expression pattern of the OsLEA4 gene in rice, which showed that OsLEA4 was expressed in different organ tissues during different development stages of rice. The expression levels of OsLEA4 in the leaves during the tillering stage and leaves and panicles during the heading stage, the filling stage and the full ripe stage were dramatically increased. Moreover, based on seed germination, growth status and physiological indices, the overexpression of OsLEA4 in transgenic rice plants conferred increased resistance to drought, salt and heavy metal stresses compared with the wild type (WT) plants. After drought, high salinity and heavy metal stresses, the increase in the malondialdehyde content in transgenic plants was less than that in WT, and the increase in the free proline and soluble sugar contents in transgenic plants were greater than those of the WT plants. These results indicated that the OsLEA4 protein contributes to drought, salt and heavy metal tolerance in rice plants. Thus, OsLEA4 is a potential candidate gene for plant genetic modification. (C) 2015 Published by Elsevier B.V.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 50 条
  • [1] Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.)
    Tang, Lili
    Cai, Hua
    Ji, Wei
    Luo, Xiao
    Wang, Zhenyu
    Wu, Jing
    Wang, Xuedong
    Cui, Lin
    Wang, Yang
    Zhu, Yanming
    Bai, Xi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 71 : 22 - 30
  • [2] Overexpression of OsRLCK241 confers enhanced salt and drought tolerance in transgenic rice (Oryza sativa L.)
    Zhang, Hui
    Zhai, Niu
    Ma, Xiang
    Zhou, Huina
    Cui, Yanchun
    Wang, Chen
    Xu, Guoyun
    GENE, 2021, 768
  • [3] Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.)
    Ai, Bin
    Chen, Yong
    Zhao, Minmin
    Ding, Gumu
    Xie, Jiankun
    Zhang, Fantao
    GENETIC RESOURCES AND CROP EVOLUTION, 2021, 68 (01) : 87 - 92
  • [4] Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)
    Martins Abreu, Fernanda Raquel
    Dedicova, Beata
    Vianello, Rosana Pereira
    Lanna, Anna Cristina
    Vieira de Oliveira, Joao Augusto
    Vieira, Ariadna Faria
    Morais, Odilon Peixoto
    Mendonca, Joao Antonio
    Brondani, Claudio
    PROTOPLASMA, 2018, 255 (06) : 1751 - 1761
  • [5] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    De-Er Zeng
    Pei Hou
    Fangming Xiao
    Yongsheng Liu
    Journal of Plant Biochemistry and Biotechnology, 2015, 24 : 56 - 64
  • [6] Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.)
    Zeng, De-Er
    Hou, Pei
    Xiao, Fangming
    Liu, Yongsheng
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 24 (01) : 56 - 64
  • [7] A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.)
    Rasheed, Adnan
    Hassan, Muhammad U.
    Aamer, Muhammad
    Batool, Maria
    Fang, Sheng
    Wu, Ziming
    Liu, Huijie
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2020, 48 (04) : 1756 - 1788
  • [8] Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.)
    Wan, Jiong
    Meng, Shujun
    Wang, Qiyue
    Zhao, Jiawen
    Qiu, Xiaoqian
    Wang, Liangfa
    Li, Juan
    Lin, Yuan
    Mu, Liqin
    Dang, Kuntai
    Xie, Qiankun
    Tang, Jihua
    Ding, Dong
    Zhang, Zhanhui
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [9] Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.)
    Bin Ai
    Yong Chen
    Minmin Zhao
    Gumu Ding
    Jiankun Xie
    Fantao Zhang
    Genetic Resources and Crop Evolution, 2021, 68 : 87 - 92
  • [10] Overexpression of a phospholipase (OsPLDα1) for drought tolerance in upland rice (Oryza sativa L.)
    Fernanda Raquel Martins Abreu
    Beata Dedicova
    Rosana Pereira Vianello
    Anna Cristina Lanna
    João Augusto Vieira de Oliveira
    Ariadna Faria Vieira
    Odilon Peixoto Morais
    João Antônio Mendonça
    Claudio Brondani
    Protoplasma, 2018, 255 : 1751 - 1761