Sharp asymptotics for the minimal mass blow up solution of the critical gKdV equation

被引:4
作者
Combet, Vianney [1 ]
Martel, Yvan [2 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59000 Lille, France
[2] Univ Paris Saclay, CNRS, Ecole Polytech, CMLS, F-91128 Palaiseau, France
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2017年 / 141卷 / 02期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Generalized Korteweg-de Vries equation; Blow up; Minimal mass solution; Soliton; SCHRODINGER-EQUATIONS; GROUND-STATES; STABILITY; DYNAMICS; NONEXISTENCE; EXISTENCE; SOLITONS; PROFILE;
D O I
10.1016/j.bulsci.2017.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a minimal mass blow up solution of the critical generalized KdV equation as constructed in [25]. We prove both time and space sharp asymptotics for S close to the blow up time. Let Q be the unique ground state of (gKdV), satisfying Q" + Q(5) = Q. First, we show that there exist universal smooth profiles Q(k) is an element of S(R) (with Q(0) = Q) and a constant c(0) is an element of R such that, fixing the blow up time at t = 0 and appropriate scaling and translation parameters, S satisfies, for any m >= 0, partial derivative(m)(x) s(t)- Sigma([m/2])(k=0) 1/t(1/2)+m-2k Q(K)((m-k)) (.+ 1/t/t +c(0) )-> 0 in L-2 as t down arrow 0. second,we prove that, for 0 < t << 1, x <= -1/t-1, s(t,x)similar to-1/2\\Q\\ L-1 \x\(-3/2,) and related bounds for the derivatives of S(t) of any order. We also prove integral S-R(t,x) dx = 0. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:20 / 103
页数:84
相关论文
共 38 条
[1]   Minimal Blow-Up Solutions to the Mass-Critical Inhomogeneous NLS Equation [J].
Banica, Valeria ;
Carles, Remi ;
Duyckaerts, Thomas .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :487-531
[2]  
BOURGAIN J., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P197
[3]  
Cazenave, 2003, SEMILINEAR SCHRODING, V10
[4]  
Combet V, 2016, J EVOL EQU, V16, P483, DOI 10.1007/s00028-015-0309-z
[5]   Multi-Soliton Solutions for the Supercritical gKdV Equations [J].
Combet, Vianney .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :380-419
[6]   Threshold solutions for the focusing 3D cubic Schrodinger equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) :1-56
[7]   DYNAMIC OF THRESHOLD SOLUTIONS FOR ENERGY-CRITICAL NLS [J].
Duyckaerts, Thomas ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (06) :1787-1840
[8]  
Kato T., 1983, Adv. Math. Suppl. Stud. Stud. Appl. Math., V8, P93
[9]  
Kenig C.E., 2000, Contemp. Math., V263, P131
[10]   Asymptotic stability of solitons for the Benjamin-Ono equation [J].
Kenig, Carlos E. ;
Martel, Yvan .
REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (03) :909-970