Synchronization of chaotic attractors with different equilibrium points

被引:3
|
作者
Morel, Cristina [1 ]
Vlad, Radu [2 ]
Morel, Jean-Yves [3 ]
Petreus, Dorin [4 ]
机构
[1] ESEO, F-49107 Angers, France
[2] Tech Univ Cluj Napoca, Management & Syst Engn Dept, Cluj Napoca 400641, Romania
[3] Univ Angers, Elect Engn & Comp Sci Dept, F-49045 Angers, France
[4] Tech Univ Cluj Napoca, Appl Elect Dept, Cluj Napoca 400027, Romania
关键词
anticontrol of chaos; independent periodic attractors; switching piecewise-constant controller; synchronization; paraboloid; LIMIT-CYCLES; SYSTEMS; ANTICONTROL; BREAKING;
D O I
10.1080/00207160.2013.829918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the synchronization of coupled chaotic systems with many equilibrium points. By addition of an external switching piecewise-constant controller, the system changes to a new one with several independent chaotic attractors in the state space. Then, by addition of a nonlinear state feedback control, the chaos synchronization is presented. This method can be used in many couples of chaotic systems characterized by the same equilibrium point or by two different equilibrium points, even they are the same systems (Lorenz, Jerk, Van der Pol) or two chaotic systems with different structures (Lorenz modified).
引用
收藏
页码:1255 / 1280
页数:26
相关论文
共 50 条
  • [1] Multiple attractors and robust synchronization of a chaotic system with no equilibrium
    Xu, Yan
    Zhang, Mei
    Li, Chun-Lai
    OPTIK, 2016, 127 (03): : 1363 - 1367
  • [2] Hidden multiwing chaotic attractors with multiple stable equilibrium points
    Deng, Quanli
    Wang, Chunhua
    Wu, Yazheng
    Lin, Hairong
    CIRCUIT WORLD, 2022, 49 (04) : 583 - 594
  • [3] BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS
    ASHWIN, P
    BUESCU, J
    STEWART, I
    PHYSICS LETTERS A, 1994, 193 (02) : 126 - 139
  • [4] Synchronization of chaotic systems with coexisting attractors
    Pisarchik, A. N.
    Jaimes-Reategui, R.
    Villalobos-Salazar, J. R.
    Garcia-Lopez, J. H.
    Boccaletti, S.
    PHYSICAL REVIEW LETTERS, 2006, 96 (24)
  • [5] A Chaotic System with an Infinite Number of Equilibrium Points: Dynamics, Horseshoe, and Synchronization
    Viet-Thanh Pham
    Volos, Christos
    Vaidyanathan, Sundarapandian
    Wang, Xiong
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [6] Different Families of Hidden Attractors in a New Chaotic System with Variable Equilibrium
    Viet-Thanh Pham
    Jafari, Sajad
    Volos, Christos
    Kapitaniak, Tomasz
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [7] BLENDING CHAOTIC ATTRACTORS USING THE SYNCHRONIZATION OF CHAOS
    ABARBANEL, HDI
    RULKOV, NF
    SUSHCHIK, MM
    PHYSICAL REVIEW E, 1995, 52 (01) : 214 - 217
  • [8] Fuzzy Synchronization of Chaotic Systems with Hidden Attractors
    Zaqueros-Martinez, Jessica
    Rodriguez-Gomez, Gustavo
    Tlelo-Cuautle, Esteban
    Orihuela-Espina, Felipe
    ENTROPY, 2023, 25 (03)
  • [9] Describing chaotic attractors: Regular and perpetual points
    Dudkowski, Dawid
    Prasad, Awadhesh
    Kapitaniak, Tomasz
    CHAOS, 2018, 28 (03)
  • [10] Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points
    Li, Chunlai
    Hai, Wenhua
    AUTOMATIKA, 2018, 59 (02) : 184 - 193