The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer

被引:62
|
作者
Khajeh, Aboozar [1 ]
Modarress, Hamid [1 ]
机构
[1] Amirkabir Univ Technol, Dept Chem Engn, Tehran Polytech, Tehran 15914, Iran
来源
关键词
Ibuprofen; Cholesterol; DMPC bilayer; Molecular dynamics (MD); Potential of mean force (PMF); Permeation; LOCAL-ANESTHETIC ARTICAINE; MOLECULAR-DYNAMICS; LATERAL DIFFUSION; CONSTANT-PRESSURE; SIMULATIONS; MEMBRANES; DIPALMITOYLPHOSPHATIDYLCHOLINE; BEHAVIOR; DRUGS; PHOSPHOLIPIDS;
D O I
10.1016/j.bbamem.2014.05.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this work, molecular dynamics (MD) simulations with atomistic details were performed to examine the influence of the cholesterol on the interactions and the partitioning of the hydrophobic drug ibuprofen in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Analysis of MD simulations indicated that ibuprofen molecules prefer to be located in the hydrophobic acyl chain region of DMPC/cholesterol bilayers. This distribution decreases the lateral motion of lipid molecules. The presence of ibuprofen molecules in the bilayers with 0 and 25 mol% cholesterol increases the ordering of hydrocarbon tails of lipids whereas for the bilayers with 50 mol% cholesterol, ibuprofen molecules perturb the flexible chains of DMPC lipids which leads to the reduction of the acyl chain order parameter. The potential of the mean force (PMF) method was used to calculate the free energy profile for the transferring of an ibuprofen molecule from the bulk water into the DMPC/cholesterol membranes. The PMF studies indicated that the presence of 50 mol% cholesterol in the bilayers increases the free energy barrier and slows down the permeation of the ibuprofen drug across the DMPC bilayer. This can be due to the condensing and ordering effects of the cholesterol on the bilayer. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2431 / 2438
页数:8
相关论文
共 50 条
  • [1] Influence of Cholesterol on Phospholipid Bilayer Dynamics
    Boughter, Christopher T.
    Klauda, Jeffery B.
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 410A - 410A
  • [2] Melittin-Lipid Bilayer Interactions and the Role of Cholesterol
    Wessman, Per
    Stromstedt, Adam A.
    Malmsten, Martin
    Edwards, Katarina
    BIOPHYSICAL JOURNAL, 2008, 95 (09) : 4324 - 4336
  • [3] Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics
    Boughter, Christopher T.
    Monje-Galvan, Viviana
    Im, Wonpil
    Klauda, Jeffery B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (45): : 11761 - 11772
  • [4] BILAYER ACYL CHAIN DYNAMICS AND LIPID PROTEIN INTERACTIONS
    HUDSON, B
    WOLBER, P
    RUGGIERO, A
    BIOPHYSICAL JOURNAL, 1981, 33 (02) : A166 - A166
  • [5] Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies
    Koronkiewicz, S
    Kalinowski, S
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2004, 1661 (02): : 196 - 203
  • [6] RAMAN STUDIES OF LIPID INTERACTIONS AT THE BILAYER INTERFACE - PHOSPHATIDYL CHOLINE - CHOLESTEROL
    BICKNELLBROWN, E
    BROWN, KG
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1980, 94 (02) : 638 - 645
  • [7] Ibuprofen in a Lipid Bilayer: Nanoscale Spatial Arrangement
    Kashnik, Anna S.
    Baranov, Denis S.
    Dzuba, Sergei A.
    MEMBRANES, 2022, 12 (11)
  • [8] Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer
    Liu, Yonglan
    Zhang, Dong
    Zhang, Yanxian
    Tang, Yijing
    Xu, Lijian
    He, Huacheng
    Wu, Jiang
    Zheng, Jie
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (36): : 7830 - 7841
  • [9] Molecular dynamics study of MscL interactions with a curved lipid bilayer
    Meyer, Grischa R.
    Gullingsrud, Justin
    Schulten, Klaus
    Martinac, Boris
    BIOPHYSICAL JOURNAL, 2006, 91 (05) : 1630 - 1637
  • [10] Molecular dynamics of interactions of phosphorus(V) porphyrins with lipid bilayer
    Kalutsky, Maksim
    Gorbunova, Yulia
    Batishchev, Oleg
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2021, 50 (SUPPL 1): : 141 - 141