Super tableaux and a branching rule for the general linear Lie superalgebra

被引:7
作者
Clark, Sean [1 ]
Peng, Yung-Ning [2 ]
Thamrongpairoj, S. Kuang [1 ,3 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
[2] Acad Sinica, Inst Math, Taipei, Taiwan
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
关键词
05E10; 17B10; Gelfand-Tsetlin bases; representations; Lie superalgebras; duality; Young diagrams;
D O I
10.1080/03081087.2013.860599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we formulate and prove a branching rule for simple polynomial modules of the Lie superalgebra . Our branching rules depend on the conjugacy class of a Borel subalgebra. A Gelfand-Tsetlin basis of a polynomial module associated to each Borel subalgebra is obtained in terms of generalized semistandard tableaux.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 12 条
[1]   HOOK YOUNG-DIAGRAMS WITH APPLICATIONS TO COMBINATORICS AND TO REPRESENTATIONS OF LIE-SUPERALGEBRAS [J].
BERELE, A ;
REGEV, A .
ADVANCES IN MATHEMATICS, 1987, 64 (02) :118-175
[2]  
Cheng S.-J., 2013, GRADUATE STUDIES MAT, V144
[3]   Howe Duality and Kostant Homology Formula for Infinite-Dimensional Lie Superalgebras [J].
Cheng, Shun-Jen ;
Kwon, Jae-Hoon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[4]   Super duality and irreducible characters of ortho-symplectic Lie superalgebras [J].
Cheng, Shun-Jen ;
Lam, Ngau ;
Wang, Weiqiang .
INVENTIONES MATHEMATICAE, 2011, 183 (01) :189-224
[5]   Howe duality for Lie superalgebras [J].
Cheng, SJ ;
Wang, WQ .
COMPOSITIO MATHEMATICA, 2001, 128 (01) :55-94
[6]  
Goodman R., 2009, GTM, V255
[7]   LIE SUPER-ALGEBRAS [J].
KAC, VG .
ADVANCES IN MATHEMATICS, 1977, 26 (01) :8-96
[8]   Rational sernistandard tableaux and character formula for the Lie superalgebra (gI)over-cap∞|∞ [J].
Kwon, Jae-Hoon .
ADVANCES IN MATHEMATICS, 2008, 217 (02) :713-739
[9]  
Molev AI, 2006, HBK ALGEBR, V4, P109, DOI 10.1016/S1570-7954(06)80006-9
[10]  
Sagan B., 2001, GTM, V203