Transient analysis of multicomponent transport with carbon monoxide poisoning effect of a PEM fuel cell

被引:25
作者
Wang, Chien-Ping [1 ]
Chu, Hsin-Sen [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
PEM fuel cell; two-phase; transient evolution; CO poisoning; CO TOLERANCE; MATHEMATICAL-MODEL; GAS-DIFFUSION; ANODE; HYDROGEN; CATHODE; ELECTROCATALYSIS; PERFORMANCE; PRESSURE; CATALYST;
D O I
10.1016/j.jpowsour.2005.12.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A one-dimensional. two-phase, transient mathematical model was developed to analyze how carbon monoxide poisoning affects the performance of a PEM fuel cell. This work examines both vapor and liquid water transport inside the cell. The theoretical results indicate that a higher CO concentration results in less hydrogen coverage and a large drop in the time to reach steady state t(ss). The slowing of the reactions at both the anode and the cathode reduce the saturation of liquid water in the catalytic layers. The distribution of liquid water depends more strongly on the CO concentration than on dilution of hydrogen in the MEA of the fuel cell. Increasing the amount of pure hydrogen drastically increases t(ss), for a wide range of CO contents. At a relatively low CO content, a long t(ss) can be achieved using pure hydrogen, especially at high cell voltage, promoting the tolerance for CO and providing the desired performance of the fuel cell. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1025 / 1033
页数:9
相关论文
共 21 条
[1]   Modelling CO poisoning and O2 bleeding in a PEM fuel cell anode [J].
Baschuk, JJ ;
Li, XG .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2003, 27 (12) :1095-1116
[2]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[3]  
BERNARDI DM, 1991, J ELECTROCHEM SOC, V37, P1151
[4]   Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed [J].
Bhatia, KK ;
Wang, CY .
ELECTROCHIMICA ACTA, 2004, 49 (14) :2333-2341
[5]   A mathematical model of polymer electrolyte fuel cell with anode CO kinetics [J].
Chan, SH ;
Goh, SK ;
Jiang, SP .
ELECTROCHIMICA ACTA, 2003, 48 (13) :1905-1919
[6]   Components for PEM fuel cell systems using hydrogen and CO containing fuels [J].
Divisek, J ;
Oetjen, HF ;
Peinecke, V ;
Schmidt, VM ;
Stimming, U .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3811-3815
[7]   The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts [J].
Grgur, BN ;
Markovic, NM ;
Ross, PN .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (05) :1613-1619
[8]   Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields [J].
He, WS ;
Yi, JS ;
Nguyen, TV .
AICHE JOURNAL, 2000, 46 (10) :2053-2064
[9]   Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells [J].
Lee, SJ ;
Mukerjee, S ;
Ticianelli, EA ;
McBreen, J .
ELECTROCHIMICA ACTA, 1999, 44 (19) :3283-3293
[10]   Modeling liquid water effects in the gas diffusion and catalyst layers of the cathode of a PEM fuel cell [J].
Lin, GY ;
He, WS ;
Nguyen, TV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (12) :A1999-A2006