A Study of Disease Prediction on Weighted Symptom Data Using Deep Learning and Machine Learning Algorithms

被引:0
|
作者
Colak, Melike [1 ]
Sivri, Talya Tumer [1 ]
Akman, Nergis Pervan [1 ]
Berkol, Ali [1 ]
Ekici, Yahya [2 ]
机构
[1] BITES Def & Aerosp Technol, Def & Informat Syst, Ankara, Turkey
[2] Istanbul Beylikduzu Int Hosp, Gen Surg Dept, Medicana Hlth Point, Istanbul, Turkey
关键词
Healthcare Symptom Checker; Clinical Decision Support Systems; Machine Learning; Deep Learning; Supervised Learning;
D O I
10.1109/ICTACSE50438.2022.10009857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence has gained significant power in the health sector with the increase in electronic data obtained from biomedical and health services. This large data repository allows patient data to be processed and meaningful for deep learning and machine learning developments. This study protects people from information pollution on the internet, informs them about their disease with a reliable accuracy score, and prevents terrible scenarios by providing the earliest diagnosis for essential diseases. It also serves many purposes, such as helping doctors make diagnoses about a patient's condition and improving medical students' knowledge by practicing on different types of cases. Our system analyzes the symptom values the user gives and then returns the disease predicted with the highest accuracy using deep learning and machine learning algorithms. The dataset includes 133 symptoms and 42 disease types. There are 306 patient records containing different types of cases. This study uses supervised machine learning techniques, Support Vector Machine, Naive Bayes Classifier, K-Nearest Neighbors, Random Forest Classifier, Decision Tree Classifier, XGBoost, LightGBM, and Multilayer Perceptron Classifier were tried on a dataset available online. As a result of the experiments, it was seen that the highest accuracy score was achieved by using the XGBoost algorithm.
引用
收藏
页码:116 / 119
页数:4
相关论文
共 50 条
  • [1] Wind Power Prediction Using Machine Learning and Deep Learning Algorithms
    Simsek, Ecem
    Gungor, Aysemuge
    Karavelioglu, Oyku
    Yerli, Mustafa Tolga
    Kuyumcuoglu, Nejat Goktug
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [2] A Comprehensive Review on Heart Disease Risk Prediction using Machine Learning and Deep Learning Algorithms
    Karna, Vishnu Vardhana Reddy
    Karna, Viswavardhan Reddy
    Janamala, Varaprasad
    Devana, V. N. Koteswara Rao
    Ch, V. Ravi Sankar
    Tummala, Aravinda Babu
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2025, 32 (03) : 1763 - 1795
  • [3] Liver disease prediction using machine learning and deep learning: A comparative study
    Singla, Bhawna
    Taneja, Soham
    Garg, Rishika
    Nagrath, Preeti
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (01): : 71 - 84
  • [4] An RHMIoT Framework for Cardiovascular Disease Prediction and Severity Level Using Machine Learning and Deep Learning Algorithms
    Patro S.P.
    Padhy N.
    International Journal of Ambient Computing and Intelligence, 2022, 13 (01)
  • [5] Multiple disease prediction using Machine learning algorithms
    Arumugam K.
    Naved M.
    Shinde P.P.
    Leiva-Chauca O.
    Huaman-Osorio A.
    Gonzales-Yanac T.
    Materials Today: Proceedings, 2023, 80 : 3682 - 3685
  • [6] Prediction of Heart Disease Using Machine Learning Algorithms
    Krishnan, Santhana J.
    Geetha, S.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [7] Alzheimer Disease Prediction using Machine Learning Algorithms
    Neelaveni, J.
    Devasana, M. S. Geetha
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 101 - 104
  • [8] Heart Disease Prediction Using Machine Learning Algorithms
    Malavika, G.
    Rajathi, N.
    Vanitha, V.
    Parameswari, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 24 - 27
  • [9] Diabetes Disease Prediction Using Machine Learning Algorithms
    Lyngdoh, Arwatki Chen
    Choudhury, Nurul Amin
    Moulik, Soumen
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 517 - 521
  • [10] Heart Disease Prediction Using Machine Learning Algorithms
    Mammen, Rea
    Pawar, Arti
    SMART SENSORS MEASUREMENT AND INSTRUMENTATION, CISCON 2021, 2023, 957 : 239 - 253