Identities for Bernoulli polynomials and Bernoulli numbers

被引:1
作者
Alzer, Horst [1 ]
Kwong, Man Kam [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
关键词
Bernoulli polynomials; Bernoulli numbers; identities; RECURRENCE FORMULA;
D O I
10.1007/s00013-014-0653-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if m and v are integers with and 0 <= v <= m and x is a real number, then [GRAPHICS] [GRAPHICS] where B (n) (x) denotes the Bernoulli polynomial of degree n. An application of (1) leads to new identities for Bernoulli numbers B (n) . Among others, we obtain [GRAPHICS] This formula extends two results obtained by Kaneko and Chen-Sun, who proved (2) for the special cases j = 1,v=0 and j = 3, v=0, respectively.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 7 条
[1]  
Apostol T.M., 1976, INTRO ANAL NUMBER TH
[2]   Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials [J].
Chen, William Y. C. ;
Sun, Lisa H. .
JOURNAL OF NUMBER THEORY, 2009, 129 (09) :2111-2132
[3]  
Dilcher K., A Bibliography of Bernoulli numbers
[4]   Applications of the classical umbral calculus [J].
Gessel, IM .
ALGEBRA UNIVERSALIS, 2003, 49 (04) :397-434
[5]   A RECURRENCE FORMULA FOR THE BERNOULLI NUMBERS [J].
KANEKO, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (08) :192-193
[6]  
Milovanovic G. V., 1994, Topics in Polynomials: Extremal Problems, Inequalities, Zeros
[7]  
Momiyama H, 2001, FIBONACCI QUART, V39, P285