On optimality of Bayesian wavelet estimators

被引:21
作者
Abramovich, F [1 ]
Amato, U
Angelini, C
机构
[1] Tel Aviv Univ, Dept Stat & Operat Res, IL-69978 Tel Aviv, Israel
[2] Ist Applicaz Calcolo, Rome, Italy
关键词
Bayes Factor; Bayes model; Besov spaces; minimax estimation; non-linear estimation; non-parametric regression; posterior mean; posterior median; wavelets;
D O I
10.1111/j.1467-9469.2004.02-087.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the asymptotic optimality of several Bayesian wavelet estimators, namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet coefficients is a mixture of a mass function at zero and a Gaussian density. We show that in terms of the mean squared error, for the properly chosen hyperparameters of the prior, all the three resulting Bayesian wavelet estimators achieve optimal minimax rates within any prescribed Besov space b(p,q)(s) for p greater than or equal to 2. For 1 less than or equal to p < 2, the Bayes Factor is still optimal for (2s+2)/(2s+1) less than or equal to p < 2 and always outperforms the posterior mean and the posterior median that can achieve only the best possible rates for linear estimators in this case.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 25 条
  • [1] Wavelet thresholding via a Bayesian approach
    Abramovich, F
    Sapatinas, T
    Silverman, BW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 725 - 749
  • [2] Stochastic expansions in an overcomplete wavelet dictionary
    Abramovich, F
    Sapatinas, T
    Silverman, BW
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) : 133 - 144
  • [3] Wavelet analysis and its statistical applications
    Abramovich, F
    Bailey, TC
    Sapatinas, T
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2000, 49 : 1 - 29
  • [4] ABRAMOVICH F, 1999, LECT NOTES STAT, V141, P33
  • [5] [Anonymous], 1993, Ten Lectures of Wavelets
  • [6] Antoniadis A., 1997, J ITALIAN STAT ASS, V6, P97, DOI DOI 10.1007/BF03178905
  • [7] Antoniadis A., 2001, J STAT SOFTW, V6, P1, DOI [10.18637/jss.v006.i06, DOI 10.18637/JSS.V006.I06]
  • [8] Brown LD, 1996, ANN STAT, V24, P2384
  • [9] Adaptive Bayesian wavelet shrinkage
    Chipman, HA
    Kolaczyk, ED
    McCullogh, RE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (440) : 1413 - 1421
  • [10] Multiple shrinkage and subset selection in wavelets
    Clyde, M
    Parmigiani, G
    Vidakovic, B
    [J]. BIOMETRIKA, 1998, 85 (02) : 391 - 401