Ballistocardiogram as Proximal Timing Reference for Pulse Transit Time Measurement: Potential for Cuffless Blood Pressure Monitoring

被引:104
|
作者
Kim, Chang-Sei [1 ]
Carek, Andrew M. [2 ]
Mukkamala, Ramakrishna [3 ]
Inan, Omer T. [2 ]
Hahn, Jin-Oh [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国国家卫生研究院;
关键词
Ballistocardiogram (BCG); blood pressure; electrocardiogram (ECG); pulse arrival time (PAT); pulse transit time (PTT); ARRIVAL-TIME; PREEJECTION PERIOD; HEART-RATE; CONTRACTILITY; CALIBRATION; MARKER; ECG;
D O I
10.1109/TBME.2015.2440291
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Goal: We tested the hypothesis that the ballistocardiogram (BCG) waveform could yield a viable proximal timing reference for measuring pulse transit time (PTT). Methods: From 15 healthy volunteers, we measured PTT as the time interval between BCG and a noninvasively measured finger blood pressure (BP) waveform. To evaluate the efficacy of the BCG-based PTT in estimating BP, we likewise measured pulse arrival time (PAT) using the electrocardiogram (ECG) as proximal timing reference and compared their correlations to BP. Results: BCG-based PTT was correlated with BP reasonably well: the mean correlation coefficient (r) was 0.62 for diastolic (DP), 0.65 for mean (MP), and 0.66 for systolic (SP) pressures when the intersecting tangent method was used as distal timing reference. Comparing four distal timing references (intersecting tangent, maximum second derivative, diastolic minimum, and systolic maximum), PTT exhibited the best correlation with BP when the systolic maximum method was used (mean r value was 0.66 for DP, 0.67 for MP, and 0.70 for SP). PTT was more strongly correlated with DP than PAT regardless of the distal timing reference: mean r value was 0.62 versus 0.51 (p = 0.07) for intersecting tangent, 0.54 versus 0.49 (p = 0.17) for maximum second derivative, 0.58 versus 0.52 (p = 0.37) for diastolic minimum, and 0.66 versus 0.60 (p = 0.10) for systolic maximum methods. The difference between PTT and PAT in estimating DP was significant (p = 0.01) when the r values associated with all the distal timing references were compared altogether. However, PAT appeared to outperform PTT in estimating SP (p = 0.31 when the r values associated with all the distal timing references were compared altogether). Conclusion: We conclude that BCG is an adequate proximal timing reference in deriving PTT, and that BCG-based PTT may be superior to ECG-based PAT in estimating DP. Significance: PTT with BCG as proximal timing reference has potential to enable convenient and ubiquitous cuffless BP monitoring.
引用
收藏
页码:2657 / 2664
页数:8
相关论文
共 50 条
  • [21] Continuous and Noninvasive Blood Pressure Estimation by Two-Sensor Measurement of Pulse Transit Time
    Rasool, Anam
    Rafiq, Muqudas
    Nasir, Aisha
    Kashif, Faisal M.
    2018 14TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET), 2018,
  • [22] Adaptive Algorithm for Continuous Monitoring of Blood Pressure Using a Pulse Transit Time
    Jadooei, Ali
    Zaderykhin, O.
    Shulgin, V. I.
    2013 IEEE XXXIII INTERNATIONAL SCIENTIFIC CONFERENCE ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2013, : 297 - 301
  • [23] Continuous Systolic Blood Pressure Measurement Based on Improved Pulse Transit Time
    Xie, Meng
    Yang, Bo
    Chen, Cailian
    Guan, Xinping
    Hong, Peijun
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 5173 - 5178
  • [24] An Evaluation of the Cuffless Blood Pressure Estimation Based on Pulse Transit Time Technique: a Half Year Study on Normotensive Subjects
    Wong, Mico Yee-Man
    Poon, Carmen Chung-Yan
    Zhang, Yuan-Ting
    CARDIOVASCULAR ENGINEERING, 2009, 9 (01) : 32 - 38
  • [25] A Compensation Method for Blood Pressure Estimation by Pulse Transit Time
    Liu, Songsong
    Ma, Heather T.
    Chen, Long
    Wang, Xiaopeng
    Yuan, Dezhang
    2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
  • [26] Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking
    Shin, Sungtae
    Mousavi, Azin
    Lyle, Sophia
    Jang, Elisabeth
    Yousefian, Peyman
    Mukkamala, Ramakrishna
    Jang, Dae-Geun
    Kwon, Ui Kun
    Kim, Youn Ho
    Hahn, Jin-Oh
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (01) : 347 - 355
  • [27] Pulse transit time: validation of blood pressure measurement under positive airway pressure ventilation
    Schmalgemeier, Heidi
    Bitter, Thomas
    Bartsch, Stephan
    Bullert, Kevin
    Fischbach, Thomas
    Eckert, Siegfried
    Horstkotte, Dieter
    Oldenburg, Olaf
    SLEEP AND BREATHING, 2012, 16 (04) : 1105 - 1112
  • [28] Development of a long term dynamic blood pressure monitoring system using cuff-less method and pulse transit time
    Huang, Ji-Jer
    Syu, Hao-Yi
    Cai, Zhe-Lin
    See, Aaron Raymond
    MEASUREMENT, 2018, 124 : 309 - 317
  • [29] The Wavelet Transform of Pulse Wave and Electrocardiogram Improves Accuracy of Blood Pressure Estimation in Cuffless Blood Pressure Measurement
    Yamanaka, Syunsuke
    Morikawa, Koji
    Yamamura, Osamu
    Morita, Hiroshi
    Huh, Ji Young
    CIRCULATION, 2016, 134
  • [30] The influence of heart rate on the relationship between pulse transit time and systolic blood pressure
    Fu, Zhizhong
    Song, Xinyue
    Qin, Tianyi
    Chen, Yifan
    Ding, Xiaorong
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (10)