Shift-invariant subspaces and wavelets on local fields

被引:5
作者
Behera, B. [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
wavelet; local field; frame; shift-invariant;
D O I
10.1007/s10474-015-0558-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every closed shift-invariant subspace of L (2)(K) is generated by the I >-translates of a countable number of functions, where K is a local field of positive characteristic and I > is an appropriate translation set. We use this result to provide a characterization of wavelets on such a field.
引用
收藏
页码:157 / 173
页数:17
相关论文
共 22 条
[1]  
Behera B., 2013, COMMUN MATH ANAL, V15, P52
[2]  
Behera B., PREPRINT
[3]   Characterization of wavelets and MRA wavelets on local fields of positive characteristic [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
COLLECTANEA MATHEMATICA, 2015, 66 (01) :33-53
[4]   HAAR WAVELETS ON THE LEBESGUE SPACES OF LOCAL FIELDS OF POSITIVE CHARACTERISTIC [J].
Behera, Biswaranjan .
COLLOQUIUM MATHEMATICUM, 2014, 136 (02) :149-168
[5]   Multiresolution analysis on local fields and characterization of scaling functions [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (02) :181-202
[6]   Wavelet packets and wavelet frame packets on local fields of positive characteristic [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) :1-14
[7]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[8]  
Benedetto RobertL., 2004, WAVELETS FRAMES OPER, V345, P27
[9]   On characterizations of multiwavelets in L2 (Rn) [J].
Bownik, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) :3265-3274
[10]  
Dahlke S., 1994, Wavelets, Images and Surface Fitting., P141