Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame
被引:18
作者:
Legros, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, FranceUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Legros, G.
[1
]
Fuentes, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille 1, Inst Univ Syst Therm Ind, CNRS, UMR 6595, F-13453 Marseille 13, FranceUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Fuentes, A.
[2
]
Rouvreau, S.
论文数: 0引用数: 0
h-index: 0
机构:
Altran Technol, F-31700 Blagnac, FranceUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Rouvreau, S.
[3
]
Joulain, P.
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Lab Combust & Deton, UPR 9028, F-86961 Futuroscope, FranceUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Joulain, P.
[4
]
Porterie, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Aix Marseille 1, Inst Univ Syst Therm Ind, CNRS, UMR 6595, F-13453 Marseille 13, FranceUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Porterie, B.
[2
]
Torero, J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Edinburgh, Sch Engn & Elect, Edinburgh EH9 3JN, Midlothian, ScotlandUniv Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
Torero, J. L.
[5
]
机构:
[1] Univ Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
[2] Univ Aix Marseille 1, Inst Univ Syst Therm Ind, CNRS, UMR 6595, F-13453 Marseille 13, France
This study integrities new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through it flat Porous burner into all oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation its well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well its "open-tip" and "closed-tip" flames. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.