Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame

被引:18
作者
Legros, G. [1 ]
Fuentes, A. [2 ]
Rouvreau, S. [3 ]
Joulain, P. [4 ]
Porterie, B. [2 ]
Torero, J. L. [5 ]
机构
[1] Univ Paris 06, CNRS, Inst Jean Rond Alembert, UMR 7190, F-78210 St Cyr Lecole, France
[2] Univ Aix Marseille 1, Inst Univ Syst Therm Ind, CNRS, UMR 6595, F-13453 Marseille 13, France
[3] Altran Technol, F-31700 Blagnac, France
[4] CNRS, Lab Combust & Deton, UPR 9028, F-86961 Futuroscope, France
[5] Univ Edinburgh, Sch Engn & Elect, Edinburgh EH9 3JN, Midlothian, Scotland
关键词
Soot; Diffusion flame; Microgravity; STANDOFF DISTANCE; MICROGRAVITY; OXIDATION; COFLOW; FUEL;
D O I
10.1016/j.proci.2008.06.179
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study integrities new and existing numerical modeling and experimental observations to provide a consistent explanation to observations pertaining flame length and soot volume fractions for laminar diffusion flames. Integration has been attempted by means of scaling analysis. Emphasis has been given to boundary layer flames. For the experiments, ethylene is injected through it flat Porous burner into all oxidizer flowing parallel to the burner surface. The oxidizer is a mixture of oxygen and nitrogen, flowing at various velocities. All experiments were conducted in microgravity to minimize the role of buoyancy in distorting the aerodynamics of the flames. A previous numerical study emphasizing fuel transport was extended to include the oxidizer flow. Fictitious tracer particles were used to establish the conditions in which fuel and oxidizer interact. This allowed establishing regions of soot formation and oxidation its well as relevant characteristic length and time scales. Adequate scaling parameters then allow to establish explanations that are consistent for different burner configurations as well its "open-tip" and "closed-tip" flames. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2461 / 2470
页数:10
相关论文
共 29 条
  • [1] Microgravity laminar diffusion flame in a perpendicular fuel and oxidizer stream configuration
    Brahmi, L
    Vietoris, T
    Rouvreau, S
    Joulain, P
    David, L
    Torero, JL
    [J]. AIAA JOURNAL, 2005, 43 (08) : 1725 - 1733
  • [2] Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames
    Brookes, SJ
    Moss, JB
    [J]. COMBUSTION AND FLAME, 1999, 116 (04) : 486 - 503
  • [3] FAETH GM, 2001, FIRE FREE FALL, P83
  • [4] Fernandez-Pello A. C., 2000, SPACE FORUM, V6, P237
  • [5] Frenklach M, 1991, P COMBUST INST, V23, P1559, DOI DOI 10.1016/S0082-0784(06)80426-1)
  • [6] Sooting behavior dynamics of a non-buoyant laminar diffusion flame
    Fuentes, A.
    Rouvreau, S.
    Joulain, P.
    Vantelon, J. -P.
    Legros, G.
    Torero, J. L.
    Fernandez-Pello, A. C.
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2007, 179 (1-2) : 3 - 19
  • [7] Interactions between soot and CH* in a laminar boundary layer type diffusion flame in microgravity
    Fuentes, A.
    Legros, G.
    Claverie, A.
    Joulain, P.
    Vantelon, J. -P.
    Torero, J. L.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2007, 31 : 2685 - 2692
  • [8] Glassman Irvin., 1977, COMBUSTION
  • [9] Models of soot formation and oxidation
    Kennedy, IM
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 1997, 23 (02) : 95 - 132
  • [10] Modeling and measurements of soot and species in a laminar diffusion flame
    Kennedy, IM
    Yam, C
    Rapp, DC
    Santoro, RJ
    [J]. COMBUSTION AND FLAME, 1996, 107 (04) : 368 - 382