Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight

被引:151
作者
Palmieri, Erika M. [1 ]
McGinity, Christopher [1 ]
Wink, David A. [1 ]
McVicar, Daniel W. [1 ]
机构
[1] NCI, Lab Canc ImmunoMetab, Frederick, MD 21702 USA
关键词
macrophage; metabolic reprogramming; nitric oxide; MITOCHONDRIAL COMPLEX-I; CYTOCHROME-C-OXIDASE; TUMOR-NECROSIS-FACTOR; HYDROXY-L-ARGININE; SUCCINATE-DEHYDROGENASE; ACTIVATED MACROPHAGES; INTERFERON-GAMMA; S-NITROSYLATION; DENDRITIC CELLS; IFN-GAMMA;
D O I
10.3390/metabo10110429
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric Oxide (NO) is a soluble endogenous gas with various biological functions like signaling, and working as an effector molecule or metabolic regulator. In response to inflammatory signals, immune myeloid cells, like macrophages, increase production of cytokines and NO, which is important for pathogen killing. Under these proinflammatory circumstances, called "M1", macrophages undergo a series of metabolic changes including rewiring of their tricarboxylic acid (TCA) cycle. Here, we review findings indicating that NO, through its interaction with heme and non-heme metal containing proteins, together with components of the electron transport chain, functions not only as a regulator of cell respiration, but also a modulator of intracellular cell metabolism. Moreover, diverse effects of NO and NO-derived reactive nitrogen species (RNS) involve precise interactions with different targets depending on concentration, temporal, and spatial restrictions. Although the role of NO in macrophage reprogramming has been in evidence for some time, current models have largely minimized its importance. It has, therefore, been hiding in plain sight. A review of the chemical properties of NO, past biochemical studies, and recent publications, necessitates that mechanisms of macrophage TCA reprogramming during stimulation must be re-imagined and re-interpreted as mechanistic results of NO exposure. The revised model of metabolic rewiring we describe here incorporates many early findings regarding NO biochemistry and brings NO out of hiding and to the forefront of macrophages immunometabolism.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 245 条
[21]   Leukocyte lipid bodies - Biogenesis and functions in inflammation [J].
Bozza, Patricia T. ;
Magalhaes, Kelly G. ;
Weller, Peter F. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2009, 1791 (06) :540-551
[22]   Transcellular regulation of cell respiration by nitric oxide generated by activated macrophages [J].
Brown, GC ;
Foxwell, N ;
Moncada, S .
FEBS LETTERS, 1998, 439 (03) :321-324
[23]   NANOMOLAR CONCENTRATIONS OF NITRIC-OXIDE REVERSIBLY INHIBIT SYNAPTOSOMAL RESPIRATION BY COMPETING WITH OXYGEN AT CYTOCHROME-OXIDASE [J].
BROWN, GC ;
COOPER, CE .
FEBS LETTERS, 1994, 356 (2-3) :295-298
[24]   Nitric oxide in parasitic infections [J].
Brunet, LR .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2001, 1 (08) :1457-1467
[25]   Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium [J].
Buckley, BJ ;
Marshall, ZM ;
Whorton, AR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 307 (04) :973-979
[26]   A roadmap for interpreting 13C metabolite labeling patterns from cells [J].
Buescher, Joerg M. ;
Antoniewicz, Maciek R. ;
Boros, Laszlo G. ;
Burgess, Shawn C. ;
Brunengraber, Henri ;
Clish, Clary B. ;
DeBerardinis, Ralph J. ;
Feron, Olivier ;
Frezza, Christian ;
Ghesquiere, Bart ;
Gottlieb, Eyal ;
Hiller, Karsten ;
Jones, Russell G. ;
Kamphorst, Jurre J. ;
Kibbey, Richard G. ;
Kimmelman, Alec C. ;
Locasale, Jason W. ;
Lunt, Sophia Y. ;
Maddocks, Oliver D. K. ;
Malloy, Craig ;
Metallo, Christian M. ;
Meuillet, Emmanuelle J. ;
Munger, Joshua ;
Noeh, Katharina ;
Rabinowitz, Joshua D. ;
Ralser, Markus ;
Sauer, Uwe ;
Stephanopoulos, Gregory ;
St-Pierre, Julie ;
Tennant, Daniel A. ;
Wittmann, Christoph ;
Vander Heiden, Matthew G. ;
Vazquez, Alexei ;
Vousden, Karen ;
Young, Jamey D. ;
Zamboni, Nicola ;
Fendt, Sarah-Maria .
CURRENT OPINION IN BIOTECHNOLOGY, 2015, 34 :189-201
[27]   NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms [J].
Buga, GM ;
Wei, LH ;
Bauer, PM ;
Fukuto, JM ;
Ignarro, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 1998, 275 (04) :R1256-R1264
[28]   REGULATION OF NITRIC-OXIDE SYNTHASE ACTIVITY IN HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 (HIV-1)-INFECTED MONOCYTES - IMPLICATIONS FOR HIV-ASSOCIATED NEUROLOGICAL DISEASE [J].
BUKRINSKY, MI ;
NOTTET, HSLM ;
SCHMIDTMAYEROVA, H ;
DUBROVSKY, L ;
FLANAGAN, CR ;
MULLINS, ME ;
LIPTON, SA ;
GENDELMAN, HE .
JOURNAL OF EXPERIMENTAL MEDICINE, 1995, 181 (02) :735-745
[29]   HUMAN ALVEOLAR AND PERITONEAL-MACROPHAGES MEDIATE FUNGISTASIS INDEPENDENTLY OF L-ARGININE OXIDATION TO NITRITE OR NITRATE [J].
CAMERON, ML ;
GRANGER, DL ;
WEINBERG, JB ;
KOZUMBO, WJ ;
KOREN, HS .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1990, 142 (06) :1313-1319
[30]   Triacylglycerol synthesis enhances macrophage inflammatory function [J].
Castoldi, Angela ;
Monteiro, Lauar B. ;
Bakker, Nikki van Teijlingen ;
Sanin, David E. ;
Rana, Nisha ;
Corrado, Mauro ;
Cameron, Alanna M. ;
Haessler, Fabian ;
Matsushita, Mai ;
Caputa, George ;
Geltink, Ramon I. Klein ;
Buescher, Joerg ;
Edwards-Hicks, Joy ;
Pearce, Erika L. ;
Pearce, Edward J. .
NATURE COMMUNICATIONS, 2020, 11 (01)