Convergence Analysis of a Symmetric Dual-Wind Discontinuous Galerkin Method

被引:13
作者
Lewis, Thomas [1 ]
Neilan, Michael [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27412 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Discontinuous Galerkin methods; Symmetric; Error estimates; FINITE-ELEMENT-METHOD; CONVECTION-DIFFUSION PROBLEMS; ELLIPTIC PROBLEMS; EQUATIONS;
D O I
10.1007/s10915-013-9773-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new symmetric discontinuous Galerkin method for second order elliptic problems is analyzed. We show that the numerical method is stable for any positive penalty parameter and converges with optimal order provided the exact solution is sufficiently regular. These results are also shown to hold for some non-positive penalty parameters. Numerical experiments are presented that support the theoretical results.
引用
收藏
页码:602 / 625
页数:24
相关论文
共 21 条
[1]  
[Anonymous], 2008, FRONTIERS APPL MATH
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[5]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[6]  
Bassi F., 1997, 2 EUROPEAN C TURBOMA, P99
[7]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[8]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[9]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[10]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463