Novel aspects in thin film silicon solar cells-amorphous, microcrystalline and nanocrystalline silicon

被引:39
|
作者
Kondo, M [1 ]
Matsuda, A [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
关键词
plasma processing and deposition; silicon; solar cells;
D O I
10.1016/j.tsf.2003.12.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The improvement of photodegradation of a-Si:H has been studied on the basis of controlling the subsurface reaction and gaseous phase reaction. We found that higher deposition temperature, hydrogen dilution and triode method are effective to reduce the SiH2 density in the film and to suppress the photodegradation of solar cells. These results are explained in terms of the hydrogen elimination reaction in the subsurface region and the contribution of the higher silane radicals to the film growth. The high-rate deposition of muc-Si:H was obtained by means of a high-pressure method and further improvement in deposition rate and the film quality was achieved in combination with the locally high-density plasma, which enables effective dissociation of source gases without thermal damage. It was also found that the deposition pressure is crucial to improve the film quality for device. This technique was successfully applied to the solar cells and an efficiency of 7.9% was obtained at a deposition rate of 3.1 nm/s. The potential application of nanocrystalline silicon is also discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [1] Amorphous Silicon, Microcrystalline Silicon, and Thin-Film Polycrystalline Silicon Solar Cells
    Ruud E. I. Schropp
    Reinhard Carius
    Guy Beaucarne
    MRS Bulletin, 2007, 32 : 219 - 224
  • [2] Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
    Schropp, Ruud E. I.
    Carius, Reinhard
    Beaucarne, Guy
    MRS BULLETIN, 2007, 32 (03) : 219 - 224
  • [3] Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells
    Ambrosio, R.
    Moreno, M.
    Torres, A.
    Carrillo, A.
    Vivaldo, I.
    Cosme, I.
    Heredia, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 643 : S27 - S32
  • [4] Applications of microcrystalline hydrogenated cubic silicon carbide for amorphous silicon thin film solar cells
    Ogawa, Shunsuke
    Okabe, Masaaki
    Ikeda, Ytiusuke
    Itoh, Takashi
    Yoshida, Norimitsu
    Nonomura, Shuichi
    THIN SOLID FILMS, 2008, 516 (05) : 740 - 742
  • [6] A review on progress of amorphous and microcrystalline silicon thin-film solar cells
    Kabir M.I.
    Ibarahim Z.
    Sopian K.
    Amin N.
    Recent Patents on Electrical Engineering, 2011, 4 (01) : 50 - 62
  • [7] Thin film solar modules based on amorphous and microcrystalline silicon
    Repmann, T
    Sehrbrock, B
    Zahren, C
    Siekmann, H
    Müller, J
    Rech, B
    Psyk, W
    Geyer, R
    Lechner, P
    PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION, VOLS A-C, 2003, : 1574 - 1579
  • [8] Microcrystalline silicon thin-film solar cells
    Hayakawa, Takashi
    Nasuno, Yoshiyuki
    Kondo, Michio
    Matsuda, Akihisa
    Shapu Giho/Sharp Technical Journal, 2002, (83): : 45 - 48
  • [9] Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition
    Guha, S
    SOLAR ENERGY, 2004, 77 (06) : 887 - 892
  • [10] Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells
    Meillaud, F
    Vallat-Sauvain, E
    Niquille, X
    Dubey, M
    Bailat, J
    Shah, A
    Ballif, C
    CONFERENCE RECORD OF THE THIRTY-FIRST IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 2005, 2005, : 1412 - 1415