A characterization of Pontryagin-van Kampen duality for locally convex spaces

被引:0
作者
Bonales, FG
Trigos-Arrieta, FJ
Mendoza, RV
机构
[1] Calif State Univ Bakerfield, Dept Math, Bakersfield, CA 93311 USA
[2] Univ Michoacana, Escuela Ingn Quim, Morelia 58060, Michoacan, Mexico
[3] Univ Michoacana, Escuela Ciencias Fis Matemat, Morelia 58060, Michoacan, Mexico
关键词
absorbent; barrel; bornological; character; compact; convex; dual; equicontinuity; locally convex space; polar; quasi-complete; reflective; reflexive; topological group; weak topology;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Topological vector spaces (TVSs) are topological Abelian groups when considered under the operation of addition. It is therefore natural to ask when they satisfy Pontryagin-van Kampen (P-vK) duality. In 1984 S. Kye published a characterization of P-vK duality for real locally convex spaces (LCSs). His proof however is incorrect. In this paper we offer an alternative characterization of P-vK duality for real LCSs. We also compare our results with some other contributions and state a number of questions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 30 条
[11]  
BRUGUERA M, 1998, THESIS U BARCELONA
[12]  
BUTZMANN HP, 1977, ARCH MATH, V28, P561
[13]   Pontryagin duality for metrizable groups [J].
Chasco, MJ .
ARCHIV DER MATHEMATIK, 1998, 70 (01) :22-28
[14]  
COMFORT WW, 1993, FUND MATH, V143, P119
[15]  
Engelking R., 1989, General Topology, V2
[16]   A GROUP-THEORETIC METHOD IN APPROXIMATION THEORY [J].
HEWITT, E ;
ZUCKERMAN, HS .
ANNALS OF MATHEMATICS, 1950, 52 (03) :557-567
[17]  
HOFMANN KH, 1998, STRUCTURE COMPACT GR, V25
[18]  
Horvath J., 1966, TOPOLOGICAL VECTOR S, VI
[19]  
Jarchow H., 1981, LOCALLY CONVEX SPACE
[20]   EXTENSIONS OF THE PONTRJAGIN DUALITY .1. INFINITE PRODUCTS [J].
KAPLAN, S .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (03) :649-658