A characterization of Pontryagin-van Kampen duality for locally convex spaces

被引:0
作者
Bonales, FG
Trigos-Arrieta, FJ
Mendoza, RV
机构
[1] Calif State Univ Bakerfield, Dept Math, Bakersfield, CA 93311 USA
[2] Univ Michoacana, Escuela Ingn Quim, Morelia 58060, Michoacan, Mexico
[3] Univ Michoacana, Escuela Ciencias Fis Matemat, Morelia 58060, Michoacan, Mexico
关键词
absorbent; barrel; bornological; character; compact; convex; dual; equicontinuity; locally convex space; polar; quasi-complete; reflective; reflexive; topological group; weak topology;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Topological vector spaces (TVSs) are topological Abelian groups when considered under the operation of addition. It is therefore natural to ask when they satisfy Pontryagin-van Kampen (P-vK) duality. In 1984 S. Kye published a characterization of P-vK duality for real locally convex spaces (LCSs). His proof however is incorrect. In this paper we offer an alternative characterization of P-vK duality for real LCSs. We also compare our results with some other contributions and state a number of questions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 89
页数:15
相关论文
共 30 条
[1]   PONTRYAGIN DUALITY IN THE THEORY OF TOPOLOGICAL VECTOR-SPACES [J].
AKBAROV, SS .
MATHEMATICAL NOTES, 1995, 57 (3-4) :319-322
[2]   INCOMPLETE MONTEL SPACES [J].
AMEMIYA, I ;
KOMURA, Y .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :273-&
[3]  
[Anonymous], T MOSKOV MAT OBSC
[4]  
[Anonymous], 1995, PITMAN RES NOTES MAT
[5]  
AUSSENHOFER L, 1999, THESIS TUBINGEN
[6]  
BANASZCZYK W, 1991, LECT NOTES MATH, V1466
[7]  
Bourbaki N., 1987, Elements of Mathematics
[8]  
BOURBAKI N, 1996, GEN TOPOLOGY 2
[9]   DUALS OF FRECHET SPACES AND A GENERALIZATION OF BANACH-DIEUDONNE THEOREM [J].
BRAUNER, K .
DUKE MATHEMATICAL JOURNAL, 1973, 40 (04) :845-855
[10]  
Brudovsky B.S., 1967, LITOVSK MAT SB, VVII, P17