A DERIVATIVE-FREE TRUST-REGION METHOD FOR BIOBJECTIVE OPTIMIZATION

被引:34
作者
Ryu, Jong-Hyun [1 ]
Kim, Sujin [2 ]
机构
[1] Hongik Univ, Coll Business Management, Yeongi Gun, Chungcheong Nam, South Korea
[2] Natl Univ Singapore, Ind & Syst Engn Dept, Singapore 117576, Singapore
关键词
biobjective optimization; multiobjective optimization; derivative-free algorithm; trust-region method; Pareto dominance; MULTIOBJECTIVE OPTIMIZATION; SETS; NORM; PERFORMANCE; ALGORITHMS; MODELS;
D O I
10.1137/120864738
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider unconstrained black-box biobjective optimization problems in which analytic forms of the objective functions are not available and function values can be obtained only through computationally expensive simulations. We propose a new algorithm to approximate the Pareto optimal solutions of such problems based on a trust-region approach. At every iteration, we identify a trust region, then sample and evaluate points from it. To determine nondominated solutions in the trust region, we employ a scalarization method to convert the two objective functions into one. We construct and optimize quadratic regression models for the two original objectives and the converted single objective. We then remove dominated points from the current Pareto approximation and construct a new trust region around the most isolated point in order to explore areas that have not been visited. We prove convergence of the method under general regularity conditions and present numerical results suggesting that the method efficiently generates well-distributed Pareto optimal solutions.
引用
收藏
页码:334 / 362
页数:29
相关论文
共 28 条
  • [1] [Anonymous], 2005, MULTICRITERIA OPTIMI
  • [2] [Anonymous], 2005, EVOLUTIONARY MULTIOB
  • [3] Multiobjective optimization through a series of single-objective formulations
    Audet, Charles
    Savard, Gilles
    Zghal, Walid
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 188 - 210
  • [4] Quantitative Comparison of Approximate Solution Sets for Multicriteria Optimization Problems with Weighted Tchebycheff Preference Function
    Bozkurt, Bilge
    Fowler, John W.
    Gel, Esma S.
    Kim, Bosun
    Koksalan, Murat
    Wallenius, Jyrki
    [J]. OPERATIONS RESEARCH, 2010, 58 (03) : 650 - 659
  • [5] Conn A. R., 2009, MOS SIAM SER OPTIM
  • [6] Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation
    Conn, Andrew R.
    Scheinberg, Katya
    Vicente, Luis N.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 721 - 748
  • [7] DIRECT MULTISEARCH FOR MULTIOBJECTIVE OPTIMIZATION
    Custodio, A. L.
    Madeira, J. F. A.
    Vaz, A. I. F.
    Vicente, L. N.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 1109 - 1140
  • [8] Incorporating minimum Frobenius norm models in direct search
    Custodio, A. L.
    Rocha, H.
    Vicente, L. N.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) : 265 - 278
  • [9] Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
    Das, I
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) : 631 - 657
  • [10] A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems
    Das, I
    Dennis, JE
    [J]. STRUCTURAL OPTIMIZATION, 1997, 14 (01) : 63 - 69