Hybrid Invasive Weed Optimization Algorithm for Parameter Inversion Problems

被引:4
作者
Deng, Tan [1 ]
Du, Jiayi [2 ]
机构
[1] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China
关键词
BFGS algorithm; hybrid algorithm; invasive weed optimization; parameter inversion; solar shadow; HETEROGENEOUS COMPUTING SYSTEMS; NUMERICAL OPTIMIZATION; NEURAL-NETWORKS; ANTENNA-ARRAY; QUERIES; MODEL; GPU;
D O I
10.1142/S0218001418590152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A hybrid invasive weed optimization (HIWO) algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is proposed for the problems on parameter inversion of the nonlinear models of sun shadow with integer variables in the study. Our presented algorithm can take full advantage of the local search ability of BFGS algorithm and the global search ability of invasive weed optimization (IWO) algorithm. The HIWO algorithm can not only reverse the date of sun shadow model successfully, but also conquer the weaknesses that the classic mathematical methods are hard to address integer nonlinear optimization problems by utilizing integers in some random variables from algorithms. The results of numerical experiments demonstrate that the HIWO algorithm has not only high computing accuracy, but also fast convergence speed. It can effectively improve the accuracy and efficiency of the techniques of sun shadow location, and afford an effective and efficient technique to handle the issues of integer parameter inversion in engineering applications.
引用
收藏
页数:15
相关论文
共 40 条
[1]   Invasive weed optimization for model order reduction of linear MIMO systems [J].
Abu-Al-Nadi, Dia I. ;
Alsmadi, Othman M. K. ;
Abo-Hammour, Zaer S. ;
Hawa, Mohammed F. ;
Rahhal, Jamal S. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (06) :4570-4577
[2]   Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems [J].
Ahmadi, Mohamadreza ;
Mojallali, Hamed .
CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) :1108-1120
[3]   Large scale economic dispatch of power systems using oppositional invasive weed optimization [J].
Barisal, A. K. ;
Prusty, R. C. .
APPLIED SOFT COMPUTING, 2015, 29 :122-137
[4]   A differential invasive weed optimization algorithm for improved global numerical optimization [J].
Basak, Aniruddha ;
Maity, Dipankar ;
Das, Swagatam .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :6645-6668
[5]  
Broyden C.G., 1970, IMA J APPL MATH, V6, P76, DOI [10.1093/IMAMAT/6.1.76, DOI 10.1093/IMAMAT/6.1.76, 10.1093/imamat/6.1.76]
[6]   GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data [J].
Chen, Cen ;
Li, Kenli ;
Ouyang, Aijia ;
Tang, Zhuo ;
Li, Keqin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10) :2740-2753
[7]   A parallel approximate SS-ELM algorithm based on MapReduce for large-scale datasets [J].
Chen, Cen ;
Li, Kenli ;
Ouyang, Aijia ;
Li, Keqin .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 108 :85-94
[8]   GFlink: An In-Memory Computing Architecture on Heterogeneous CPU-GPU Clusters for Big Data [J].
Chen, Cen ;
Li, Kenli ;
Ouyang, Aijia ;
Tang, Zhuo ;
Li, Keqin .
PROCEEDINGS 45TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING - ICPP 2016, 2016, :542-551
[9]   A Parallel Random Forest Algorithm for Big Data in a Spark Cloud Computing Environment [J].
Chen, Jianguo ;
Li, Kenli ;
Tang, Zhuo ;
Bilal, Kashif ;
Yu, Shui ;
Weng, Chuliang ;
Li, Keqin .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2017, 28 (04) :919-933
[10]   Unmanned Aerial Vehicles parameter estimation using Artificial Neural Networks and Iterative Bi-Section Shooting method [J].
Hatamleh, Khaled S. ;
Al-Shabi, Mohammad ;
Al-Ghasem, Adnan ;
Asad, Asad A. .
APPLIED SOFT COMPUTING, 2015, 36 :457-467