Application of Scanning Tunneling Microscopy in Electrocatalysis and Electrochemistry

被引:35
作者
Feng, Haifeng [1 ,2 ]
Xu, Xun [1 ,2 ]
Du, Yi [1 ,2 ]
Dou, Shi Xue [1 ,2 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2500, Australia
[2] Beihang Univ, BUAA UOW Joint Res Ctr, Beijing 100191, Peoples R China
基金
澳大利亚研究理事会;
关键词
Electrochemist; Electrocatalyst; STM; EC-STM;
D O I
10.1007/s41918-020-00074-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy.
引用
收藏
页码:249 / 268
页数:20
相关论文
共 183 条
[1]   An alternative isolation of tungsten tips for a scanning tunneling microscope [J].
Abelev, E ;
Sezin, N ;
Ein-Eli, Y .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (10) :1-4
[2]  
[Anonymous], 2019, ANGEW CHEM
[3]   Oxygen Reduction Reaction Activity for Strain-Controlled Pt-Based Model Alloy Catalysts: Surface Strains and Direct Electronic Effects Induced by Alloying Elements [J].
Asano, Masato ;
Kawamura, Ryutaro ;
Sasakawa, Ren ;
Todoroki, Naoto ;
Wadayama, Toshimasa .
ACS CATALYSIS, 2016, 6 (08) :5285-5289
[4]   Porphyrins at interfaces [J].
Auwaerter, Willi ;
Ecija, David ;
Klappenberger, Florian ;
Barth, Johannes V. .
NATURE CHEMISTRY, 2015, 7 (02) :105-120
[5]   Nitrate adsorption and reduction on Cu(100) in acidic solution [J].
Bae, Sang-Eun ;
Stewart, Karen L. ;
Gewirth, Andrew A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (33) :10171-10180
[6]   In situ EC-STM studies of MPS, SPS, and chloride on Cu(100): Structural studies of accelerators for dual damascene electrodeposition [J].
Bae, Sang-Eun ;
Gewirth, Andrew A. .
LANGMUIR, 2006, 22 (25) :10315-10321
[7]   Electrochemical Properties of Pt Epitaxial Layers Formed on Pd(111) in Ultra-High Vacuum [J].
Bando, Y. ;
Takahashi, Y. ;
Ueta, E. ;
Todoroki, N. ;
Wadayama, T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) :F463-F467
[8]   Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials [J].
Baricuatro, Jack H. ;
Kim, Youn-Geun ;
Korzeniewski, Carol L. ;
Soriaga, Manuel P. .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 91 :1-4
[9]   Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides [J].
Barja, Sara ;
Refaely-Abramson, Sivan ;
Schuler, Bruno ;
Qiu, Diana Y. ;
Pulkin, Artem ;
Wickenburg, Sebastian ;
Ryu, Hyejin ;
Ugeda, Miguel M. ;
Kastl, Christoph ;
Chen, Christopher ;
Hwang, Choongyu ;
Schwartzberg, Adam ;
Aloni, Shaul ;
Mo, Sung-Kwan ;
Ogletree, D. Frank ;
Crommie, Michael F. ;
Yazyev, Oleg, V ;
Louie, Steven G. ;
Neaton, Jeffrey B. ;
Weber-Bargioni, Alexander .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols [J].
Bedioui, Fethi ;
Griveau, Sophie ;
Nyokong, Tebello ;
Appleby, A. John ;
Caro, Claudia A. ;
Gulppi, Miguel ;
Ochoa, Gonzalo ;
Zagal, Jose H. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (26) :3383-3396