Zero-Shot Transfer Learning Based on Visual and Textual Resemblance

被引:2
|
作者
Yang, Gang [1 ]
Xu, Jieping [1 ]
机构
[1] Renmin Univ China, Key Lab Data Engn & Knowledge Engn, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Transfer learning; Zero-shot learning; Deep learning;
D O I
10.1007/978-3-030-36718-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing image search engines, whose ranking functions are built based on labeled images or wrap texts, have poor results on queries in new, or low-frequency keywords. In this paper, we put forward the zero-shot transfer learning (ZSTL), which aims to transfer networks from given classifiers to new zero-shot classifiers with little cost, and helps image searching perform better on new or low-frequency words. Content-based queries (i.e., ranking images was not only based on their visual looks but also depended on their contents) can also be enhanced by ZSTL. ZSTL was proposed after we found the resemblance between photographic composition and the description of objects in natural language. Both composition and description highlight the object by stressing the particularity, so we consider that there exists a resemblance between visual and textual space. We provide several ways to transfer from visual features into textual ones. The method of applying deep learning and Word2Vec models to Wikipedia yielded impressive results. Our experiments present evidence to support the existence of resemblance between composition and description and show the feasibility and effectiveness of transferring zero-shot classifiers. With these transferred zero-shot classifiers, problems of image ranking query with low-frequency or new words can be solved. The image search engine proposed adopts cosine distance ranking as the ranking algorithm. Experiments on image searching show the superior performance of ZSTL.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [21] Zero-Shot Object Detection with Textual Descriptions
    Li, Zhihui
    Yao, Lina
    Zhang, Xiaoqin
    Wang, Xianzhi
    Kanhere, Salil
    Zhang, Huaxiang
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8690 - 8697
  • [22] DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
    Higgins, Irina
    Pal, Arka
    Rusu, Andrei
    Matthey, Loic
    Burgess, Christopher
    Pritzel, Alexander
    Botyinick, Matthew
    Blundell, Charles
    Lerchner, Alexander
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [23] Constrained GPI for Zero-Shot Transfer in Reinforcement Learning
    Kim, Jaekyeom
    Park, Seohong
    Kim, Gunhee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [24] Structurally Constrained Correlation Transfer for Zero-shot Learning
    Chen, Yu
    Xiong, Yuehan
    Gao, Xing
    Xiong, Hongkai
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [25] Constrained GPI for Zero-Shot Transfer in Reinforcement Learning
    Kim, Jaekyeom
    Park, Seohong
    Kim, Gunhee
    Advances in Neural Information Processing Systems, 2022, 35
  • [26] Zero-shot Learning via Recurrent Knowledge Transfer
    Zhao, Bo
    Sun, Xinwei
    Hong, Xiaopeng
    Yao, Yuan
    Wang, Yizhou
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1308 - 1317
  • [27] Deep Unbiased Embedding Transfer for Zero-Shot Learning
    Jia, Zhen
    Zhang, Zhang
    Wang, Liang
    Shan, Caifeng
    Tan, Tieniu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1958 - 1971
  • [28] Collaborative Filtering Based Zero-Shot Learning
    Yang B.
    Zhang Y.-X.-Q.
    Peng Y.-D.
    Zhang C.-X.
    Huang J.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (09): : 2801 - 2815
  • [29] Zero-Shot Learning: An Energy based Approach
    Zhao, Tianxiang
    Liu, Guiquan
    Wu, Le
    Ma, Chao
    Chen, Enhong
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 797 - 806
  • [30] Zero-Shot Task Transfer
    Pal, Arghya
    Balasubramanian, Vineeth N.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2184 - 2193