(1, k)-Coloring of Graphs with Girth at Least Five on a Surface

被引:17
作者
Choi, Hojin [1 ]
Choi, Ilkyoo [1 ]
Jeong, Jisu [1 ]
Suh, Geewon [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
improper coloring; discharging; graphs on surfaces; LIST IMPROPER COLORINGS; EVERY PLANAR MAP; PARTITIONS; (K;
D O I
10.1002/jgt.22039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is (d(1),..., d(r))-colorable if its vertex set can be partitioned into r sets V-1,..., V-r so that the maximum degree of the graph induced by V-i is at most d(i) for each i is an element of {1,..., r}. For a given pair (g, d(1)), the question of determining the minimum d(2) = d(2)(g, d(1)) such that planar graphs with girth at least g are (d(1), d(2))-colorable has attracted much interest. The finiteness of d(2)(g, d(1)) was known for all cases except when (g, d(1)) = (5, 1). Montassier and Ochem explicitly asked if d(2)(5, 1) is finite. We answer this question in the affirmative with d(2)(5, 1) <= 10; namely, we prove that all planar graphs with girth at least five are (1, 10)-colorable. Moreover, our proof extends to the statement that for any surface S of Euler genus gamma, there exists a K = K(gamma) where graphs with girth at least five that are embeddable on S are (1, K)-colorable. On the other hand, there is no finite k where planar graphs (and thus embeddable on any surface) with girth at least five are (0, k)-colorable. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:521 / 535
页数:15
相关论文
共 19 条
[1]  
[Anonymous], COMMUNICATION
[2]   EVERY PLANAR MAP IS 4 COLORABLE .1. DISCHARGING [J].
APPEL, K ;
HAKEN, W .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :429-490
[3]   EVERY PLANAR MAP IS 4 COLORABLE .2. REDUCIBILITY [J].
APPEL, K ;
HAKEN, W ;
KOCH, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (03) :491-567
[4]   Defective 2-colorings of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. V. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 104 :72-80
[5]   On 1-improper 2-coloring of sparse graphs [J].
Borodin, O. V. ;
Kostochka, A. ;
Yancey, M. .
DISCRETE MATHEMATICS, 2013, 313 (22) :2638-2649
[6]   (k, 1)-coloring of sparse graphs [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Raspaud, A. .
DISCRETE MATHEMATICS, 2012, 312 (06) :1128-1135
[7]  
Borodin OV, 2011, SIBERIAN MATH J+, V52, P796
[8]   (k, j)-coloring of sparse graphs [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Raspaud, A. .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) :1947-1953
[9]   Vertex Decompositions of Sparse Graphs into an Edgeless Subgraph and a Subgraph of Maximum Degree at Most k [J].
Borodin, O. V. ;
Ivanova, A. O. ;
Montassier, M. ;
Ochem, P. ;
Raspaud, A. .
JOURNAL OF GRAPH THEORY, 2010, 65 (02) :83-93
[10]  
[Бородин Олег Вениаминович Borodin Oleg Veniaminovich], 2009, [Дискретный анализ и исследование операций, Diskretnyi analiz i issledovanie operatsii], V16, P16