Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent

被引:178
作者
Liu, Lingling [1 ,2 ]
Lu, Yun [3 ,4 ,5 ,6 ]
Martinez, Jennifer [7 ]
Bi, Yujing [8 ]
Lian, Gaojian [1 ,2 ,9 ]
Wang, Tingting [1 ,2 ]
Milasta, Sandra [10 ]
Wang, Jian [3 ,4 ,5 ,6 ]
Yang, Mao [10 ]
Liu, Guangwei [3 ,4 ,5 ,6 ]
Green, Douglas R. [10 ]
Wang, Ruoning [1 ,2 ]
机构
[1] Ohio State Univ, Nationwide Childrens Hosp, Res Inst, Ctr Childhood Canc & Blood Dis, Columbus, OH 43205 USA
[2] Ohio State Univ, Nationwide Childrens Hosp, Res Inst, Hematol Oncol & Blood & Marrow Transplant, Columbus, OH 43205 USA
[3] Fudan Univ, Sch Basic Med Sci, Ministry Educ, Key Lab Med Mol Virol, Shanghai 200433, Peoples R China
[4] Fudan Univ, Sch Basic Med Sci, Ministry Hlth, Key Lab Med Mol Virol, Shanghai 200433, Peoples R China
[5] Fudan Univ, Sch Basic Med Sci, Dept Immunol, Shanghai 200433, Peoples R China
[6] Fudan Univ, Inst Immunobiol, Biotherapy Res Ctr, Shanghai 200433, Peoples R China
[7] NIEHS, Immun Inflammat & Dis Lab, NIH, POB 12233, Res Triangle Pk, NC 27709 USA
[8] Beijing Inst Microbiol & Epidemiol, State Key Lab Pathogen & Biosecur, Beijing 100101, Peoples R China
[9] Univ South China, Med Res Ctr, Hengyang 421101, Hunan, Peoples R China
[10] St Jude Childrens Res Hosp, Dept Immunol, 332 N Lauderdale St, Memphis, TN 38105 USA
关键词
metabolism; macrophage; cell cycle; Myc; HIF1; alpha; GLUTAMINE-METABOLISM; NITRIC-OXIDE; C-MYC; GLUCOSE; CANCER; GLYCOLYSIS; PYRUVATE; CELLS; HIF; DIFFERENTIATION;
D O I
10.1073/pnas.1518000113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1 alpha)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1a selectively impaired the CSF-1-or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1 alpha suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1 alpha-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.
引用
收藏
页码:1564 / 1569
页数:6
相关论文
共 52 条
[21]   Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J].
Heiden, Matthew G. Vander ;
Cantley, Lewis C. ;
Thompson, Craig B. .
SCIENCE, 2009, 324 (5930) :1029-1033
[22]   Carrot and stick:: HIF-α engages c-Myc in hypoxic adaptation [J].
Huang, L. E. .
CELL DEATH AND DIFFERENTIATION, 2008, 15 (04) :672-677
[23]   DIFFERENCE IN GLUCOSE SENSITIVITY OF LIVER GLYCOLYSIS AND GLYCOGEN-SYNTHESIS - RELATIONSHIP BETWEEN LACTATE PRODUCTION AND FRUCTOSE 2,6-BISPHOSPHATE CONCENTRATION [J].
HUE, L ;
SOBRINO, F ;
BOSCA, L .
BIOCHEMICAL JOURNAL, 1984, 224 (03) :779-786
[24]   Differentiation Stage-Specific Requirement in Hypoxia-Inducible Factor-1α-Regulated Glycolytic Pathway during Murine B Cell Development in Bone Marrow [J].
Kojima, Hidefumi ;
Kobayashi, Ayano ;
Sakurai, Daisuke ;
Kanno, Yumiko ;
Hase, Hidenori ;
Takahashi, Riichi ;
Totsuka, Yoshikazu ;
Semenza, Gregg L. ;
Sitkovsky, Michail V. ;
Kobata, Tetsuji .
JOURNAL OF IMMUNOLOGY, 2010, 184 (01) :154-163
[25]   Dendritic cell SIRT1-HIF1α axis programs the differentiation of CD4+ T cells through IL-12 and TGF-β1 [J].
Liu, Guangwei ;
Bi, Yujing ;
Xue, Lixiang ;
Zhang, Yan ;
Yang, Hui ;
Chen, Xi ;
Lu, Yun ;
Zhang, Zhengguo ;
Liu, Huanrong ;
Wang, Xiao ;
Wang, Ruoning ;
Chu, Yiwei ;
Yang, Ruifu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (09) :E957-E965
[26]   Cytosolic NADP+-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species [J].
Maeng, O ;
Kim, YC ;
Shin, HJ ;
Lee, JO ;
Huh, TL ;
Kang, KI ;
Kim, YS ;
Paik, SG ;
Lee, HY .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 317 (02) :558-564
[27]   Macrophages, Immunity, and Metabolic Disease [J].
McNelis, Joanne C. ;
Olefsky, Jerrold M. .
IMMUNITY, 2014, 41 (01) :36-48
[28]   Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets [J].
Michalek, Ryan D. ;
Gerriets, Valerie A. ;
Jacobs, Sarah R. ;
Macintyre, Andrew N. ;
MacIver, Nancie J. ;
Mason, Emily F. ;
Sullivan, Sarah A. ;
Nichols, Amanda G. ;
Rathmell, Jeffrey C. .
JOURNAL OF IMMUNOLOGY, 2011, 186 (06) :3299-3303
[29]   Exploring the full spectrum of macrophage activation [J].
Mosser, David M. ;
Edwards, Justin P. .
NATURE REVIEWS IMMUNOLOGY, 2008, 8 (12) :958-969
[30]   SnapShot: Immunometabolism [J].
Murray, Peter J. ;
Rathmell, Jeffrey ;
Pearce, Edward .
CELL METABOLISM, 2015, 22 (01) :190-190