STANDARD DEVIATION OF THE LONGEST COMMON SUBSEQUENCE

被引:22
作者
Lember, Jueri [1 ]
Matzinger, Heinrich [2 ]
机构
[1] Univ Tartu, Inst Stat Math, EE-50409 Tartu, Estonia
[2] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Longest common subsequence; variance bound; Chvatal-Sankoff conjecture; EXPECTED LENGTH;
D O I
10.1214/08-AOP436
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let L-n be the length of the longest common subsequence of two independent i.i.d. sequences of Bernoulli variables of length n, We prove that the order of the standard deviation of L-n is root n, provided the parameter of the Bernoulli variables is small enough. This validates Waterman's conjecture in this situation [Philos. Trans. R. Soc. Lond. Ser B 344 (1994) 383-390]. The order conjectured by Chvatal and Sankoff [J. Appl. Probab. 12 (1975) 306-315], however, is different.
引用
收藏
页码:1192 / 1235
页数:44
相关论文
共 17 条
[1]   THE RATE OF CONVERGENCE OF THE MEAN LENGTH OF THE LONGEST COMMON SUBSEQUENCE [J].
Alexander, Kenneth S. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1074-1082
[2]  
Amsalu S., 2007, ESAIM-PROBAB STAT, V11, P281
[3]  
[Anonymous], 1975, J APPL PROBAB
[4]  
[Anonymous], 1995, Introduction to computational biology: maps, sequences and genomes
[5]   `A PHASE TRANSITION FOR THE SCORE IN MATCHING RANDOM SEQUENCES ALLOWING DELETIONS [J].
Arratia, Richard ;
Waterman, Michael S. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (01) :200-225
[6]   Bounding the expected length of longest common subsequences and forests [J].
BaezaYates, RA ;
Gavaldà, R ;
Navarro, G ;
Scheihing, R .
THEORY OF COMPUTING SYSTEMS, 1999, 32 (04) :435-452
[7]  
Bonetto F., 2006, ALEA-LAT AM J PROBAB, V2, P195
[8]   Extensive simulations for longest common subsequences - Finite size scaling, a cavity solution, and configuration space properties [J].
de Monvel, JB .
EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (02) :293-308
[9]  
DEVROY L, 1996, APPL MATH NEW YORK, V31
[10]   Large deviations-based upper bounds on the expected relative length of longest common subsequences [J].
Hauser, Raphael ;
Martinez, Servet ;
Matzinger, Heinrich .
ADVANCES IN APPLIED PROBABILITY, 2006, 38 (03) :827-852