A Volume Comparison Theorem for Asymptotically Hyperbolic Manifolds

被引:20
作者
Brendle, Simon [1 ]
Chodosh, Otis [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
RIEMANNIAN PENROSE INEQUALITY; MEAN-CURVATURE FLOW; SCALAR CURVATURE; SURFACES; MASS;
D O I
10.1007/s00220-014-2074-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a notion of renormalized volume of an asymptotically hyperbolic manifold. Moreover, we prove a sharp volume comparison theorem for metrics with scalar curvature at least -6. Finally, we show that the inequality is strict unless the metric is isometric to one of the Anti-deSitter-Schwarzschild metrics.
引用
收藏
页码:839 / 846
页数:8
相关论文
共 13 条
[1]  
Bray H., 1997, THESIS STANDFORD U
[2]  
Bray HL, 2001, J DIFFER GEOM, V59, P177
[3]   On the capacity of surfaces in manifolds with nonnegative scalar curvature [J].
Bray, Hubert ;
Miao, Pengzi .
INVENTIONES MATHEMATICAE, 2008, 172 (03) :459-475
[4]  
Brendle S., ARXIV12090669
[5]  
Brendle S, 2012, SURV DIFF GEOM, V17, P179
[6]   CONSTANT MEAN CURVATURE SURFACES IN WARPED PRODUCT MANIFOLDS [J].
Brendle, Simon .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117) :247-269
[7]   On isoperimetric surfaces in general relativity [J].
Corvino, Justin ;
Gerek, Aydin ;
Greenberg, Michael ;
Krummel, Brian .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (01) :63-84
[8]  
Fan XQ, 2009, COMMUN ANAL GEOM, V17, P37
[9]   The inverse mean curvature flow and the Riemannian Penrose Inequality [J].
Huisken, G ;
Ilmanen, T .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (03) :353-437
[10]  
Huisken G., 2006, MATH ASPECTS GENERAL