On the Eigenvalues Distribution in Threshold Graphs

被引:8
作者
Lou, Zhenzhen [1 ]
Wang, Jianfeng [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi, Peoples R China
[2] Shandong Univ Technol, Sch Math & Stat, Zibo, Peoples R China
基金
中国国家自然科学基金;
关键词
Adjacency matrix; Threshold graph; Median eigenvalues; HOMO-LUMO; Inertia;
D O I
10.1007/s00373-019-02042-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A threshold graph G of order n is defined by binary sequence of length n. In this paper, we consider the adjacent matrix of a connected threshold graph, and give the eigenvalues distribution in threshold graphs. Moreover, we pick out all the threshold graphs with distinct eigenvalues, and determine the HOMO-LUMO index of threshold graphs.
引用
收藏
页码:867 / 880
页数:14
相关论文
共 26 条
[1]   Spectral characterizations of anti-regular graphs [J].
Aguilar, Cesar O. ;
Lee, Joon-yeob ;
Schweitzer, Barbara J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 :84-104
[2]  
[Anonymous], 1971, PROC SUMMER MEET CAN
[3]   On the normalized spectrum of threshold graphs [J].
Banerjee, Anirban ;
Mehatari, Ranjit .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 :288-304
[4]   On the adjacency matrix of a threshold graph [J].
Bapat, R. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) :3008-3015
[5]  
Fowler PW, 2010, MATCH-COMMUN MATH CO, V64, P373
[6]  
Fowler PW, 2010, ACTA CHIM SLOV, V57, P513
[7]  
Godsil C, 2001, ALGEBRAIC GRAPH THEO
[8]   Large regular bipartite graphs with median eigenvalue 1 [J].
Guo, Krystal ;
Mohar, Bojan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 449 :68-75
[9]   Laplacian spectra and spanning trees of threshold graphs [J].
Hammer, PL ;
Kelmans, AK .
DISCRETE APPLIED MATHEMATICS, 1996, 65 (1-3) :255-273
[10]  
Harary F., 1974, Lecture Notes in Mathematics, V406, P45