Design and development of ankle-foot prosthesis with delayed release of plantarflexion

被引:8
|
作者
Mitchell, Michael [1 ]
Craig, Katelynn [1 ]
Kyberd, Peter [1 ]
Biden, Edmund [2 ,3 ]
Bush, Greg [1 ]
机构
[1] Univ New Brunswick, Inst Biomed Engn, Fredericton, NB E3B 5A3, Canada
[2] Univ New Brunswick, Fredericton, NB E3B 5A3, Canada
[3] Univ New Brunswick, Sch Grad Studies, Fredericton, NB E3B 5A3, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
ankle; artificial legs; energy-storage prostheses; intelligent control; microprocessor control; motion analysis; prosthesis; prosthetic feet; prosthetic limbs; rehabilitation; ENERGY-STORAGE; MUSCLE POWER; WALKING; AMPUTEES; AMBULATION; MOMENT; COST; GAIT; FEET; MASS;
D O I
10.1682/JRRD.2011.06.0107
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
A computer-controlled mechanism that fits a standard ankle-foot prosthesis was designed to capture the absorbed energy in the ankle and delay its release until specific times in the gait cycle. This mechanism used a direct current motor to take up and hold the compression of a carbon-fiber ankle joint. Based on the timing of the contact forces between the foot and the ground, a microprocessor released the spring at preset times later in the gait cycle. This mechanism was added to a Talux prosthetic foot and was employed by a user of a conventional energy-storage ankle-foot prosthesis. His gait was recorded using a motion analysis system. Five settings: 0, 55, 65, 75, and 85 ms delay were tested on separate days, and the standard kinematic and kinetic gait data were recorded. The user reported some settings were more comfortable than others. When these preferences were tested with a randomized double-blind trial, the preferences were not consistent. A second user showed a preference for the 55 ms delay. The modifications to the device resulted in changes to the gait of the subjects, including increased cadence and kinematics of the unaffected joints and a longer, slower push from the ankle, which was noticed by both of the subjects.
引用
收藏
页码:409 / 422
页数:14
相关论文
共 50 条
  • [1] Design, Control, and Evaluation of a Robotic Ankle-Foot Prosthesis Emulator
    Anderson, Anthony J.
    Hudak, Yuri F.
    Muir, Brittney C.
    Aubin, Patrick M.
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (03): : 741 - 752
  • [2] An Ankle-Foot Prosthesis Emulator with Control of Plantarflexion and Inversion-Eversion Torque
    Collins, Steven H.
    Kim, Myunghee
    Chen, Tianjian
    Chen, Tianyao
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1210 - 1216
  • [3] DEVELOPMENT OF AN ANKLE-FOOT PROSTHESIS FOR PHYSICAL THERAPY
    Nickel, Eric
    Voss, Gregory
    Hansen, Andrew
    Koehler-McNicholas, Sara
    2019 DESIGN OF MEDICAL DEVICES CONFERENCE, 2019,
  • [4] A Study of Human Walking Biomechanics for Ankle-Foot Prosthesis Design
    Fandakli, Selin Aydin
    Okumus, Halil Ibrahim
    Ozturk, Mehmet
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [5] An Ankle-Foot Prosthesis Emulator With Control of Plantarflexion and Inversion-Eversion Torque
    Kim, Myunghee
    Chen, Tianjian
    Chen, Tianyao
    Collins, Steven H.
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (05) : 1183 - 1194
  • [6] The MyFlex-ζ Foot: A Variable Stiffness ESR Ankle-Foot Prosthesis
    Tabucol, Johnnidel
    Kooiman, Vera G. M.
    Leopaldi, Marco
    Leijendekkers, Ruud
    Selleri, Giacomo
    Mellini, Marcello
    Verdonschot, Nico
    Oddsson, Magnus
    Carloni, Raffaella
    Zucchelli, Andrea
    Brugo, Tommaso M.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2025, 33 : 653 - 663
  • [7] Teleoperation of an Ankle-Foot Prosthesis With a Wrist Exoskeleton
    Welker, Cara G.
    Chiu, Vincent L.
    Voloshina, Alexandra S.
    Collins, Steven H.
    Okamura, Allison M.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (05) : 1714 - 1725
  • [8] Biologically Inspired Design and Development of a Variable Stiffness Powered Ankle-Foot Prosthesis
    Agboola-Dobson, Alexander
    Wei, Guowu
    Ren, Lei
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2019, 11 (04):
  • [9] A Robotic Ankle-Foot Prosthesis With Active Alignment
    LaPre, Andrew Kennedy
    Umberger, Brian R.
    Sup, Frank C.
    JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2016, 10 (02):
  • [10] Biomechanics of the ankle-foot system during stair ambulation: Implications for design of advanced ankle-foot prostheses
    Sinitski, Emily H.
    Hansen, Andrew H.
    Wilken, Jason M.
    JOURNAL OF BIOMECHANICS, 2012, 45 (03) : 588 - 594