Quantum propagation and confinement in 1D systems using the transfer-matrix method

被引:7
作者
Pujol, Olivier [1 ]
Carles, Robert [2 ]
Perez, Jose-Philippe [3 ]
机构
[1] Univ Lille 1, UFR Phys, Opt Atmospher Lab, F-59655 Villeneuve Dascq, France
[2] Univ Toulouse, CEMES, F-31055 Toulouse 4, France
[3] Univ Toulouse, IRAP, Observ Midi Pyrenees, F-31400 Toulouse, France
关键词
transfer-matrix; quantum physics; confinement; reflection and transmission; MECHANICS;
D O I
10.1088/0143-0807/35/3/035025
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The aim of this article is to provide some MATLAB scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field.
引用
收藏
页数:26
相关论文
共 15 条
  • [1] SOLVING THE SCHRODINGER-EQUATION IN ARBITRARY QUANTUM-WELL POTENTIAL PROFILES USING THE TRANSFER-MATRIX METHOD
    JONSSON, B
    ENG, ST
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (11) : 2025 - 2035
  • [2] MAN-MADE QUANTUM WELLS - A NEW PERSPECTIVE ON THE FINITE SQUARE-WELL PROBLEM
    KOLBAS, RM
    HOLONYAK, N
    [J]. AMERICAN JOURNAL OF PHYSICS, 1984, 52 (05) : 431 - 437
  • [3] Diatomic molecules according to the wave mechanics. II. Vibrational levels
    Morse, PM
    [J]. PHYSICAL REVIEW, 1929, 34 (01): : 57 - 64
  • [4] Study of the neutron quantum states in the gravity field
    Nesvizhevsky, VV
    Petukhov, AK
    Börner, HG
    Baranova, TA
    Gagarski, AM
    Petrov, GA
    Protasov, KV
    Voronin, AY
    Baessler, S
    Abele, H
    Westphal, A
    Lucovac, L
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2005, 40 (04): : 479 - 491
  • [5] Perez J-Ph, 2013, QUANTIQUE FONDEMENTS, P1078
  • [6] INTEREST OF THE TRANSFER-MATRIX FOR SYMMETRICAL SYSTEMS IN LIGHT OPTICS AND IN CHARGED-PARTICLE OPTICS
    PEREZ, JP
    LANNES, A
    [J]. JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1989, 20 (01): : 3 - 11
  • [7] A synthetic approach to the transfer matrix method in classical and quantum physics
    Pujol, O.
    Perez, J. P.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (04) : 679 - 691
  • [8] The transfer matrix: A geometrical perspective
    Sanchez-Soto, Luis L.
    Monzon, Juan J.
    Barriuso, Alberto G.
    Carinena, Jose F.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 513 (04): : 191 - 227
  • [9] Revisiting elementary quantum mechanics with the BenDaniel-Duke boundary condition
    Singh, VA
    Kumar, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 2006, 74 (05) : 412 - 418
  • [10] TUNNELING IN A FINITE SUPERLATTICE
    TSU, R
    ESAKI, L
    [J]. APPLIED PHYSICS LETTERS, 1973, 22 (11) : 562 - 564