Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space

被引:27
作者
Fu, Yu [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math & Quantitat Econ, Dalian 116025, Peoples R China
关键词
Biharmonic submanifolds; Mean curvature vector; Chen's conjecture; CHENS CONJECTURE; SUBMANIFOLDS; MAPS;
D O I
10.1016/j.geomphys.2013.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A submanifold M-n of a Euclidean space E-m is said to be biharmonic if Delta(H) over right arrow = 0, where Delta is a rough Laplacian operator and (H) over right arrow denotes the mean curvature vector. In 1991, B.Y. Chen proposed a well-known conjecture that the only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we prove that Chen's conjecture is true for the case of hypersurfaces with three distinct principal curvatures in Euclidean 5-spaces. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 25 条
[1]   Biharmonic properly immersed submanifolds in Euclidean spaces [J].
Akutagawa, Kazuo ;
Maeta, Shun .
GEOMETRIAE DEDICATA, 2013, 164 (01) :351-355
[2]  
[Anonymous], THESIS U STUDI CAGLI
[3]  
[Anonymous], KYUSHU J MATH
[4]  
[Anonymous], PACIFIC J MATH
[5]   Classification results for biharmonic submanifolds in spheres [J].
Balmus, A. ;
Montaldo, S. ;
Oniciuc, C. .
ISRAEL JOURNAL OF MATHEMATICS, 2008, 168 (01) :201-220
[6]   Classification results and new examples of proper biharmonic submanifolds in spheres [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
NOTE DI MATEMATICA, 2008, 28 :49-61
[7]  
Balmus A, 2010, J GEOM SYMMETRY PHYS, V17, P87
[8]   Biharmonic hypersurfaces in 4-dimensional space forms [J].
Balmus, Adina ;
Montaldo, Stefano ;
Oniciuc, Cezar .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (12) :1696-1705
[9]   Biharmonic submanifolds of S3 [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) :867-876
[10]   Biharmonic submanifolds in spheres [J].
Caddeo, R ;
Montaldo, S ;
Oniciuc, C .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 130 (1) :109-123