Noisy low-rank matrix completion with general sampling distribution

被引:131
作者
Klopp, Olga [1 ,2 ]
机构
[1] Univ Paris Quest Nanterre, MODALX, F-92001 Nanterre, France
[2] CREST, F-92001 Nanterre, France
关键词
high-dimensional sparse model; low rank matrix estimation; matrix completion; unknown variance; PENALIZATION;
D O I
10.3150/12-BEJ486
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the present paper, we consider the problem of matrix completion with noise. Unlike previous works, we consider quite general sampling distribution and we do not need to know or to estimate the variance of the noise. Two new nuclear-norm penalized estimators are proposed, one of them of "square-root" type. We analyse their performance under high-dimensional scaling and provide non-asymptotic bounds on the Frobenius norm error. Up to a logarithmic factor, these performance guarantees are minimax optimal in a number of circumstances.
引用
收藏
页码:282 / 303
页数:22
相关论文
共 25 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   Square-root lasso: pivotal recovery of sparse signals via conic programming [J].
Belloni, A. ;
Chernozhukov, V. ;
Wang, L. .
BIOMETRIKA, 2011, 98 (04) :791-806
[3]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[4]   OPTIMAL SELECTION OF REDUCED RANK ESTIMATORS OF HIGH-DIMENSIONAL MATRICES [J].
Bunea, Florentina ;
She, Yiyuan ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2011, 39 (02) :1282-1309
[5]   The Power of Convex Relaxation: Near-Optimal Matrix Completion [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (05) :2053-2080
[6]   Matrix Completion With Noise [J].
Candes, Emmanuel J. ;
Plan, Yaniv .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :925-936
[7]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[8]  
Foygel R., 2011, 24 ANN C LEARN THEOR
[9]  
Foygel R., 2011, ADV NEURAL INFORM PR, V24
[10]   Sharp Oracle Inequalities for High-Dimensional Matrix Prediction [J].
Gaiffas, Stephane ;
Lecue, Guillaume .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (10) :6942-6957