Gaps in the space of skeletal signatures

被引:0
作者
Anderson, James W. [1 ]
Wootton, Aaron [2 ]
机构
[1] Univ Southampton, Southampton SO17 1BJ, Hants, England
[2] Univ Portland, Dept Math, Portland, OR 97203 USA
基金
英国工程与自然科学研究理事会;
关键词
Riemann surface; Automorphism; Signature; Mapping class group; Skeletal signature; COMPACT RIEMANN SURFACE; NUMBER;
D O I
10.1007/s00013-014-0607-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Skeletal signatures were introduced in Anderson and Wootton (see [1]) as a tool to describe the space of all signatures with which a group can act on a surface of genus sigma a parts per thousand yen 2. In the present paper, we provide an essentially complete description of the regular gaps that appear in the space of skeletal signatures, together with proofs of those parts of the conjectures posed in Anderson and Wootton (see [1]) related to these regular gaps.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 6 条
[1]   A lower bound for the number of group actions on a compact Riemann surface [J].
Anderson, James W. ;
Wootton, Aaron .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2012, 12 (01) :19-35
[2]  
BREUER T., 2001, LONDON MATH SOC LECT, V280
[3]  
BROUGHTON SA, 1990, J PURE APPL ALGEBRA, V69, P233
[4]   ON THE NUMBER OF GENERATORS OF A FINITE-GROUP [J].
GURALNICK, RM .
ARCHIV DER MATHEMATIK, 1989, 53 (06) :521-523
[5]   CYCLIC GROUPS OF AUTOMORPHISMS OF A COMPACT RIEMANN SURFACE [J].
HARVEY, WJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1966, 17 (66) :86-&
[6]  
The GAP Group, 2006, GAP GROUPS ALG PROGR