Sharp power mean bounds for Seiffert mean

被引:14
|
作者
Li Yong-min [1 ]
Wang Miao-kun [1 ]
Chu Yu-ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
基金
中国国家自然科学基金;
关键词
power mean; Seiffert mean; inequality; CONVEX COMBINATION BOUNDS; INEQUALITIES; TERMS;
D O I
10.1007/s11766-014-3008-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we find the greatest value p = log2/(log pi - log 2) = 1.53 aEuro broken vertical bar and the least value q = 5/3 = 1.66 aEuro broken vertical bar such that the double inequality M (p) (a, b) < T(a, b) < M (q) (a, b) holds for all a, b > 0 with a not equal b. Here, M (p) (a, b) and T (a, b) are the p-th power and Seiffert means of two positive numbers a and b, respectively.
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条
  • [31] Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean
    Zhu, Ling
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [32] Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean
    Ling Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [33] Several sharp inequalities about the first Seiffert mean
    Boyong Long
    Ling Xu
    Qihan Wang
    Journal of Inequalities and Applications, 2018
  • [34] The Optimal Convex Combination Bounds for Seiffert's Mean
    Liu, Hong
    Meng, Xiang-Ju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [35] The Optimal Convex Combination Bounds for Seiffert's Mean
    Hong Liu
    Xiang-Ju Meng
    Journal of Inequalities and Applications, 2011
  • [36] New sharp bounds for logarithmic mean and identric mean
    Yang, Zhen-Hang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [37] New sharp bounds for logarithmic mean and identric mean
    Zhen-Hang Yang
    Journal of Inequalities and Applications, 2013
  • [38] Sharp bounds for the lemniscatic mean by the weighted Holder mean
    Zhao, Tie-hong
    Wang, Miao-kun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [39] SHARP BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    Chu, Yuming
    Zhao, Tiehong
    Song, Yingqing
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 797 - 806
  • [40] SHARP POWER MEAN BOUNDS FOR THE TANGENT AND HYPERBOLIC SINE MEANS
    Zhao, Tie-Hong
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1459 - 1472