Dynamics of the Lorenz system under quasiperiodic driving

被引:11
作者
He Wen-Ping
Feng Guo-Lin [1 ]
Gao Xin-Quan
Chou Ji-Fan
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm Temperate E Asia, Beijing 100029, Peoples R China
[2] Natl Climate Ctr, Lab Climate Studies, China Meteorol Adm, Beijing 100081, Peoples R China
[3] Yangzhou Univ, Dept Phys, Yangzhou 225002, Peoples R China
[4] Lanzhou Univ, Dept Atmospher Sci, Lanzhou 730000, Peoples R China
关键词
quasiperiodicity; Lorenz system; strange nonchaotic attractor;
D O I
10.7498/aps.55.3175
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have investigated the dynamics of the Lorenz system under quasiperiodic driving. When the forcing amplitude is increased to certain critical value, the dynamics changes fundamentally. Therefore a new mechanism for the creation of the strange nonchaotic attractor is advanced in this paper. When the forcing amplitude is increased, the strange attractor is replaced by a strange nonchaotic attractor, eventually the phase space is suppressed into an invariant quasiperiodic torus. Numerical results show that the critical amplitude of the force is roughly proportional to the Rayleigh parameter, but slightly influenced by its frequency.
引用
收藏
页码:3175 / 3179
页数:5
相关论文
共 21 条
[1]  
AWADHESH P, 2003, PHYS REV E, V68, P7201
[2]   Chaos suppression in the parametrically driven Lorenz system -: art. no. 036206 [J].
Choe, CU ;
Höhne, K ;
Benner, H ;
Kivshar, YS .
PHYSICAL REVIEW E, 2005, 72 (03)
[3]   On physical basis of ensemble prediction [J].
Feng, GL ;
Dong, WJ .
ACTA PHYSICA SINICA, 2003, 52 (09) :2347-2353
[4]  
FENG GL, 2001, ACTA PHYS SINICA, V50, P30
[5]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[6]  
HE WP, 2006, IN PRESS ACTA PHYS S, V55
[7]   THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS [J].
HEAGY, JF ;
HAMMEL, SM .
PHYSICA D, 1994, 70 (1-2) :140-153
[8]   FRACTALIZATION OF TORUS [J].
KANEKO, K .
PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (05) :1112-1115
[9]   Transition from strange nonchaotic to strange chaotic attractors [J].
Lai, YC .
PHYSICAL REVIEW E, 1996, 53 (01) :57-65
[10]  
LOENZ EN, 1963, J ATMOS SCI, V20, P130