Power-exponential velocity distributions in disordered porous media

被引:27
作者
Matyka, Maciej [1 ]
Golembiewski, Jaroslaw [1 ]
Koza, Zbigniew [1 ]
机构
[1] Univ Wroclaw, Fac Phys & Astron, PL-50204 Wroclaw, Poland
关键词
FLUID-FLOW; STOCHASTIC-MODEL; SIMULATION; TRANSPORT; ROCKS;
D O I
10.1103/PhysRevE.93.013110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power-exponential law controlled by an exponent gamma and a shift parameter u(0) and examine how these parameters depend on the porosity. We find that gamma has a universal value 1/2 at the percolation threshold and grows with the porosity, but never exceeds 2.
引用
收藏
页数:5
相关论文
共 34 条
  • [1] HEAT-TRANSFER TO A SLOWLY MOVING FLUID FROM A DILUTE FIXED-BED OF HEATED SPHERES
    ACRIVOS, A
    HINCH, EJ
    JEFFREY, DJ
    [J]. JOURNAL OF FLUID MECHANICS, 1980, 101 (NOV) : 403 - 421
  • [2] Inertial effects on fluid flow through disordered porous media
    Andrade, JS
    Costa, UMS
    Almeida, MP
    Makse, HA
    Stanley, HE
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (26) : 5249 - 5252
  • [3] Fluid flow through porous media: The role of stagnant zones
    Andrade, JS
    Almeida, MP
    Mendes, J
    Havlin, S
    Suki, B
    Stanley, HE
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (20) : 3901 - 3904
  • [4] Distribution of local fluxes in diluted porous media
    Araujo, Ascanio D.
    Bastos, Wagner B.
    Andrade, Jose S., Jr.
    Herrmann, Hans J.
    [J]. PHYSICAL REVIEW E, 2006, 74 (01):
  • [5] Bear J., 1972, Dynamics of Fluids in Porous Media
  • [6] Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images
    Bijeljic, Branko
    Raeini, Ali
    Mostaghimi, Peyman
    Blunt, Martin J.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [7] Spatial Fluctuations of Fluid Velocities in Flow through a Three-Dimensional Porous Medium
    Datta, Sujit S.
    Chiang, H.
    Ramakrishnan, T. S.
    Weitz, David A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [8] Hydraulic tortuosity in arbitrary porous media flow
    Duda, Artur
    Koza, Zbigniew
    Matyka, Maciej
    [J]. PHYSICAL REVIEW E, 2011, 84 (03)
  • [9] A stochastic model of transport in three-dimensional porous media
    Fleurant, C
    van der Lee, J
    [J]. MATHEMATICAL GEOLOGY, 2001, 33 (04): : 449 - 474
  • [10] Tortuosity in Porous Media: A Critical Review
    Ghanbarian, Behzad
    Hunt, Allen G.
    Ewing, Robert P.
    Sahimi, Muhammad
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2013, 77 (05) : 1461 - 1477