A dynamic framework for functional parameterisations of the eddy viscosity coefficient in two-dimensional turbulence

被引:4
作者
Maulik, R. [1 ]
San, O. [1 ]
机构
[1] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA
关键词
Two-dimensional turbulence; eddy viscosity; dynamic modeling; Smagorinsky model; Leith model; Baldwin-Lomax model; Cebeci-Smith model; SIMULATION; CONSTANT; MODELS;
D O I
10.1080/10618562.2017.1287902
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper puts forth a dynamic framework for investigating the subgrid scale physics of decaying two-dimensional turbulence utilising a modular approach with eddy viscosities in various functional forms. The derivation of the low-pass spatially filtered implementation of the Navier-Stokes equations is given by using the vorticity-streamfunction formulation. Two different implementations of the viscosity kernels based on the representation of the eddy viscosity terms are proposed and tested by solving a canonical two-dimensional decaying turbulence problem. It is seen that the implementation of the eddy viscosity formulation plays a distinct role in the dissipative behaviour of the different viscosity kernels. Among eddy viscosity kernels tested, we found that the Leith eddy viscosity formulation yields superior results with higher correlation coefficients.
引用
收藏
页码:69 / 92
页数:24
相关论文
共 51 条
  • [1] [Anonymous], 2012, FLUID FLOW PHENOMENA
  • [2] [Anonymous], 2011, INT GEOPHYS, DOI DOI 10.1016/B978-0-12-088759-0.00016-X
  • [3] Arakawa A., 1966, Journal of Computational Physics, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, /10.1016/0021-9991(66)90015-5]
  • [4] Baldwin B. S., 1978, 16 AM I AER ASTR AER
  • [5] Batchelor G.K., 1969, Phys. Fluids, V12, pII, DOI DOI 10.1063/1.1692443
  • [6] Berselli LC, 2006, SCI COMPUT, P1
  • [7] Evidence for the double cascade scenario in two-dimensional turbulence
    Boffetta, G.
    Musacchio, S.
    [J]. PHYSICAL REVIEW E, 2010, 82 (01):
  • [8] Two-Dimensional Turbulence
    Boffetta, Guido
    Ecke, Robert E.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, VOL 44, 2012, 44 : 427 - 451
  • [9] BORIS JP, 1992, FLUID DYN RES, V10, P199, DOI 10.1016/0169-5983(92)90023-P
  • [10] Reynolds-number dependency in homogeneous, stationary two-dimensional turbulence
    Bracco, Annalisa
    Mcwilliams, James C.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 646 : 517 - 526