Partition-Based Formulations for Mixed-Integer Optimization of Trained ReLU Neural Networks

被引:0
|
作者
Tsay, Calvin [1 ]
Kronqvist, Jan [2 ]
Thebelt, Alexander [1 ]
Misener, Ruth [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] KTH Royal Inst Technol, Dept Math, Stockholm, Sweden
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a class of mixed-integer formulations for trained ReLU neural networks. The approach balances model size and tightness by partitioning node inputs into a number of groups and forming the convex hull over the partitions via disjunctive programming. At one extreme, one partition per input recovers the convex hull of a node, i.e., the tightest possible formulation for each node. For fewer partitions, we develop smaller relaxations that approximate the convex hull, and show that they outperform existing formulations. Specifically, we propose strategies for partitioning variables based on theoretical motivations and validate these strategies using extensive computational experiments. Furthermore, the proposed scheme complements known algorithmic approaches, e.g., optimization-based bound tightening captures dependencies within a partition.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A mixed-integer optimization framework for the synthesis and analysis of regulatory networks
    Panagiota T. Foteinou
    Eric Yang
    Georges K. Saharidis
    Marianthi G. Ierapetritou
    Ioannis P. Androulakis
    Journal of Global Optimization, 2009, 43 : 263 - 276
  • [22] A mixed-integer optimization framework for the synthesis and analysis of regulatory networks
    Foteinou, Panagiota T.
    Yang, Eric
    Saharidis, Georges K.
    Ierapetritou, Marianthi G.
    Androulakis, Ioannis P.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) : 263 - 276
  • [23] Optimization of sewer networks using the mixed-integer linear programming
    Safavi, Hamidreza
    Geranmehr, Mohammad A.
    URBAN WATER JOURNAL, 2017, 14 (05) : 452 - 459
  • [24] Mixed-Integer Constrained Optimization Based on Memetic Algorithm
    Lin, Y. C.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2013, 11 : 242 - 250
  • [25] Synthesis of Nannochloropsis Oculata cultivation process based on mixed-integer formulations
    Kivanc, Sercan
    Tuncer, Basak
    Deliismail, Ozgun
    Sildir, Hasan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2025, 216 : 48 - 58
  • [26] Granularity in Nonlinear Mixed-Integer Optimization
    Neumann, Christoph
    Stein, Oliver
    Sudermann-Merx, Nathan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (02) : 433 - 465
  • [27] Granularity in Nonlinear Mixed-Integer Optimization
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Journal of Optimization Theory and Applications, 2020, 184 : 433 - 465
  • [28] A genetic mixed-integer optimization of neural network hyper-parameters
    Spurlock, Kyle
    Elgazzar, Heba
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (12): : 14680 - 14702
  • [29] Global mixed-integer dynamic optimization
    Chachuat, B
    Singer, AB
    Barton, PI
    AICHE JOURNAL, 2005, 51 (08) : 2235 - 2253
  • [30] A genetic mixed-integer optimization of neural network hyper-parameters
    Kyle Spurlock
    Heba Elgazzar
    The Journal of Supercomputing, 2022, 78 : 14680 - 14702