Semi-automated infarct segmentation from follow-up noncontrast CT scans in patients with acute ischemic stroke

被引:14
作者
Kuang, Hulin [1 ]
Menon, Bijoy K. [1 ]
Qiu, Wu [1 ]
机构
[1] Univ Calgary, Dept Clin Neurosci, Calgary, AB T2N 2T9, Canada
基金
加拿大健康研究院;
关键词
acute ischemic stroke; convex optimization; infarct segmentation; noncontrast CT; random forest;
D O I
10.1002/mp.13703
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Cerebral infarct volume observed in follow-up noncontrast computed tomography (NCCT) scans of acute ischemic stroke (AIS) patients is as an important radiologic outcome measure of the effectiveness of endovascular therapy (EVT). In this paper, our aim is to propose a semiautomated segmentation approach that can accurately measure ischemic infarct volume from NCCT images of AIS patients. Methods A novel cascaded random forest (RF) learning is first employed to classify each voxel into normal or ischemic voxel, leading to an infarct probability map. Four types of features: intensity, statistical information in local region, symmetric difference compared to the contralateral side, and spatial probability of infarct occurrence generated by the STAPLE method, are extracted. These features are input into RF to train a first-stage classifier. The coarse segmentation results generated by the first-stage classifier are then used to train a fine second-stage classifier with fivefold cross validation. The RF estimated infarct probability map obtained in the second-stage testing as well as user input high-level knowledge are then incorporated into a convex optimization function to obtain final segmentation. One hundred AIS patients were collected in this study, of which 70 patient images were used for evaluation while the remaining 30 patient images were used for RF training. Results Quantitative results show that the proposed approach is capable of yielding a dice coefficient (DC) of 79.42%, significantly outperforming some state-of-the-art automated segmentation methods, such as the RF-based methods and convolutional neural network (CNN)-based segmentation method, U-net. The infarct volume obtained by the proposed method is strongly correlated with the manually segmented volume. In addition, interobserver variability analysis initialized by two observers suggests low user dependency. Conclusions Our proposed semiautomated segmentation method can accurately segment infarct from NCCT of AIS patients.
引用
收藏
页码:4037 / 4045
页数:9
相关论文
共 20 条
  • [1] [Anonymous], J BIOMED IMAG
  • [2] Automated Cerebral Infarct Volume Measurement in Follow-up Noncontrast CT Scans of Patients with Acute Ischemic Stroke
    Boers, A. M.
    Marquering, H. A.
    Jochem, J. J.
    Besselink, N. J.
    Berkhemer, O. A.
    van der Lugt, A.
    Beenen, L. F.
    Majoie, C. B.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (08) : 1522 - 1527
  • [3] Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials
    Boers, Anna M. M.
    Jansen, Ivo G. H.
    Beenen, Ludo F. M.
    Devlin, Thomas G.
    San Roman, Luis
    Heo, Ji Hoe
    Ribo, Marc
    Brown, Scott
    Almekhlafi, Mohammed A.
    Liebeskind, David S.
    Teitelbaum, Jeanne
    Lingsma, Hester F.
    van Zwam, Wim H.
    Cuadras, Patricia
    de Rochemont, Richard du Mesnil
    Beaumont, Marine
    Brown, Martin M.
    Yoo, Albert J.
    van Oostenbrugge, Robert J.
    Menon, Bijoy K.
    Donnan, Geoffrey A.
    Mas, Jean Louis
    Roos, Yvo B. W. E. M.
    Oppenheim, Catherine
    van der Lugt, Aad
    Dowling, Richard J.
    Hill, Michael D.
    Davalos, Antoni
    Moulin, Thierry
    Agrinier, Nelly
    Demchuk, Andrew M.
    Lopes, Demetrius K.
    Aja Rodriguez, Lucia
    Dippel, Diederik W. J.
    Campbell, Bruce C. V.
    Mitchell, Peter J.
    Al-Ajlan, Fahad S.
    Jovin, Tudor G.
    Madigan, Jeremy
    Albers, Gregory W.
    Soize, Sebastien
    Guillemin, Francis
    Reddy, Vivek K.
    Bracard, Serge
    Blasco, Jordi
    Muir, Keith W.
    Nogueira, Raul G.
    White, Phil M.
    Goyal, Mayank
    Davis, Stephen M.
    [J]. JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2018, 10 (12) : 1137 - 1142
  • [4] Fast approximate energy minimization via graph cuts
    Boykov, Y
    Veksler, O
    Zabih, R
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) : 1222 - 1239
  • [5] Fast semi-automated lesion demarcation in stroke
    de Haan, Bianca
    Clas, Philipp
    Juenger, Hendrik
    Wilke, Marko
    Karnath, Hans-Otto
    [J]. NEUROIMAGE-CLINICAL, 2015, 9 : 69 - 74
  • [6] Automated delineation of stroke lesions using brain CT images
    Gillebert, Celine R.
    Humphreys, Glyn W.
    Mantini, Dante
    [J]. NEUROIMAGE-CLINICAL, 2014, 4 : 540 - 548
  • [7] Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials
    Goyal, Mayank
    Menon, Bijoy K.
    van Zwam, Wim H.
    Dippel, Diederik W. J.
    Mitchell, Peter J.
    Demchuk, Andrew M.
    Davalos, Antoni
    Majoie, Charles B. L. M.
    van der Lugt, Aad
    de Miquel, Maria A.
    Donnan, Geoff Rey A.
    Roos, Yvo B. W. E. M.
    Bonafe, Alain
    Jahan, Reza
    Diener, Hans-Christoph
    van den Berg, Lucie A.
    Levy, Elad I.
    Berkhemer, Olvert A.
    Pereira, Vitor M.
    Rempel, Jeremy
    Millan, Monica
    Davis, Stephen M.
    Roy, Daniel
    Thornton, John
    San Roman, Luis
    Ribo, Marc
    Beumer, Debbie
    Stouch, Bruce
    Brown, Scott
    Campbell, Bruce C. V.
    van Oostenbrugge, Robert J.
    Saver, Jeff Rey L.
    Hill, Michael D.
    Jovin, Tudor G.
    [J]. LANCET, 2016, 387 (10029) : 1723 - 1731
  • [8] Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning
    Kuang, H.
    Najm, M.
    Chakraborty, D.
    Maraj, N.
    Sohn, S. I.
    Goyal, M.
    Hill, M. D.
    Demchuk, A. M.
    Menon, B. K.
    Qiu, W.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) : 33 - 38
  • [9] Joint Segmentation of Intracerebral Hemorrhage and Infarct from Non-Contrast CT Images of Post-treatment Acute Ischemic Stroke Patients
    Kuang, Hulin
    Najm, Mohamed
    Menon, Bijoy K.
    Qiu, Wu
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 681 - 688
  • [10] ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
    Maier, Oskar
    Menze, Bjoern H.
    von der Gablentz, Janina
    Hani, Levin
    Heinrich, Mattias P.
    Liebrand, Matthias
    Winzeck, Stefan
    Basit, Abdul
    Bentley, Paul
    Chen, Liang
    Christiaens, Daan
    Dutil, Francis
    Egger, Karl
    Feng, Chaolu
    Glocker, Ben
    Goetz, Michael
    Haeck, Tom
    Halme, Hanna-Leena
    Havaei, Mohammad
    Iftekharuddin, Khan M.
    Jodoin, Pierre-Marc
    Kamnitsas, Konstantinos
    Kellner, Elias
    Korvenoja, Antti
    Larochelle, Hugo
    Ledig, Christian
    Lee, Jia-Hong
    Maes, Frederik
    Mahmood, Qaiser
    Maier-Hein, Klaus H.
    McKinley, Richard
    Muschelli, John
    Pal, Chris
    Pei, Linmin
    Rangarajan, Janaki Raman
    Reza, Syed M. S.
    Robben, David
    Rueckert, Daniel
    Salli, Eero
    Suetens, Paul
    Wang, Ching-Wei
    Wilms, Matthias
    Kirschke, Jan S.
    Kraemer, Ulrike M.
    Muente, Thomas F.
    Schramme, Peter
    Wiest, Roland
    Handels, Heinz
    Reyes, Mauricio
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 250 - 269