Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux

被引:68
作者
Zheng, SN [1 ]
Song, XF [1 ]
Jiang, ZX [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fujita exponents; degenerate parabolic equations; nonlinear boundary flux; nonglobal solutions; blow-up rates;
D O I
10.1016/j.jmaa.2004.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux and then determine the blow-up rates and the blow-up sets for the nonglobal solutions. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:308 / 324
页数:17
相关论文
共 18 条
[1]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[2]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[3]   CRITICAL BLOWUP AND GLOBAL EXISTENCE NUMBERS FOR A WEAKLY COUPLED SYSTEM OF REACTION-DIFFUSION EQUATIONS [J].
ESCOBEDO, M ;
LEVINE, HA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (01) :47-100
[4]   On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary [J].
Galaktionov, VA ;
Levine, HA .
ISRAEL JOURNAL OF MATHEMATICS, 1996, 94 :125-146
[5]   BLOW-UP FOR QUASI-LINEAR HEAT-EQUATIONS WITH CRITICAL FUJITAS EXPONENTS [J].
GALAKTIONOV, VA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :517-525
[6]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[7]   LOCALIZATION AND BLOW-UP OF THERMAL WAVES IN NONLINEAR HEAT-CONDUCTION WITH PEAKING [J].
GILDING, BH ;
HERRERO, MA .
MATHEMATISCHE ANNALEN, 1988, 282 (02) :223-242
[8]   THE PROFILE NEAR BLOWUP TIME FOR SOLUTION OF THE HEAT-EQUATION WITH A NONLINEAR BOUNDARY-CONDITION [J].
HU, B ;
YIN, HM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 346 (01) :117-135
[9]   SOME PROBLEMS OF THE QUALITATIVE THEORY OF NON-LINEAR DEGENERATE 2ND-ORDER PARABOLIC EQUATIONS [J].
KALASHNIKOV, AS .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (02) :169-222
[10]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288