A Comprehensive Investigation of Machine Learning Feature Extraction and Classification Methods for Automated Diagnosis of COVID-19 Based on X-ray Images

被引:56
作者
Mohammed, Mazin Abed [1 ]
Abdulkareem, Karrar Hameed [2 ]
Garcia-Zapirain, Begonya [3 ]
Mostafa, Salama A. [4 ]
Maashi, Mashael S. [5 ]
Al-Waisy, Alaa S. [1 ]
Subhi, Mohammed Ahmed [6 ]
Mutlag, Ammar Awad [7 ]
Dac-Nhuong Le [8 ,9 ]
机构
[1] Univ Anbar, Coll Comp Sci & Informat Technol, Ramadi 31001, Iraq
[2] Al Muthanna Univ, Coll Agr, Samawah 66001, Iraq
[3] Univ Deusto, eVIDA Lab, Bilbao 48007, Spain
[4] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Johor Baharu 86400, Malaysia
[5] King Saud Univ, Coll Comp & Informat Sci, Software Engn Dept, Riyadh 11451, Saudi Arabia
[6] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[7] Minist Educ, Gen Directorate Curricula, Pure Sci Dept, Baghdad 10, Iraq
[8] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[9] Duy Tan Univ, Fac Informat Technol, Da Nang 550000, Vietnam
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2021年 / 66卷 / 03期
关键词
Coronavirus disease; COVID-19; diagnosis; machine learning; convolutional neural networks; resnet50; artificial neural network; support vector machine; X-ray images; feature transfer learning; DIABETIC-RETINOPATHY; NEURAL-NETWORK; ALGORITHM; VALIDATION; CANCER; MODEL;
D O I
10.32604/cmc.2021.012874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The quick spread of the CoronavirusDisease (COVID-19) infection around the world considered a real danger for global health. The biological structure and symptoms of COVID-19 are similar to other viral chest maladies, which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease. In this study, an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods (e.g., artificial neural network (ANN), support vector machine (SVM), linear kernel and radial basis function (RBF), k-nearest neighbor (k-NN), Decision Tree (DT), andCN2 rule inducer techniques) and deep learning models (e.g., MobileNets V2, ResNet50, GoogleNet, DarkNet andXception). A largeX-ray dataset has been created and developed, namely the COVID-19 vs. Normal (400 healthy cases, and 400 COVID cases). To the best of our knowledge, it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases. Based on the results obtained from the experiments, it can be concluded that all the models performed well, deep learning models had achieved the optimum accuracy of 98.8% in ResNet50 model. In comparison, in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBF accuracy 94% for the prediction of coronavirus disease 2019.
引用
收藏
页码:3289 / 3310
页数:22
相关论文
共 54 条
[11]  
Cohen J. P., 2020, ARXIV200611988CSEESS, V1, P18272
[12]  
Cohen J.P., 2020, COVIDChestxray Database
[13]   Global Forecasting Confirmed and Fatal Cases of COVID-19 Outbreak Using Autoregressive Integrated Moving Average Model [J].
Dansana, Debabrata ;
Kumar, Raghvendra ;
Das Adhikari, Janmejoy ;
Mohapatra, Mans ;
Sharma, Rohit ;
Priyadarshini, Ishaani ;
Le, Dac-Nhuong .
FRONTIERS IN PUBLIC HEALTH, 2020, 8
[14]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[15]   A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain [J].
Ding, Yuming ;
Sohn, Jae Ho ;
Kawczynski, Michael G. ;
Trivedi, Hari ;
Harnish, Roy ;
Jenkins, Nathaniel W. ;
Lituiev, Dmytro ;
Copeland, Timothy P. ;
Aboian, Mariam S. ;
Aparici, Carina Mari ;
Behr, Spencer C. ;
Flavell, Robert R. ;
Huang, Shih-Ying ;
Zalocusky, Kelly A. ;
Nardo, Lorenzo ;
Seo, Youngho ;
Hawkins, Randall A. ;
Pampaloni, Miguel Hernandez ;
Hadley, Dexter ;
Franc, Benjamin L. .
RADIOLOGY, 2019, 290 (02) :456-464
[16]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[17]   Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR [J].
Fang, Yicheng ;
Zhang, Huangqi ;
Xie, Jicheng ;
Lin, Minjie ;
Ying, Lingjun ;
Pang, Peipei ;
Ji, Wenbin .
RADIOLOGY, 2020, 296 (02) :E115-E117
[18]   Decision tree classification of land cover from remotely sensed data [J].
Friedl, MA ;
Brodley, CE .
REMOTE SENSING OF ENVIRONMENT, 1997, 61 (03) :399-409
[19]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[20]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778