0# and inner models

被引:2
作者
Friedman, SD [1 ]
机构
[1] Inst Formale Logik, A-1090 Vienna, Austria
关键词
descriptive set theory; large cardinals; inner models;
D O I
10.2178/jsl/1190150140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:924 / 932
页数:9
相关论文
共 46 条
[41]   Elementary epimorphisms between models of set theory [J].
Robert S. Lubarsky ;
Norman Lewis Perlmutter .
Archive for Mathematical Logic, 2016, 55 :759-766
[42]   DOWNWARD TRANSFERENCE OF MICE AND UNIVERSALITY OF LOCAL CORE MODELS [J].
Caicedo, Andres Eduardo ;
Zeman, Martin .
JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (02) :385-419
[43]   AN ANALYSIS OF THE MODELS L[T2n] [J].
Atmai, Rachid .
JOURNAL OF SYMBOLIC LOGIC, 2019, 84 (01) :1-26
[44]   THE BOREL COMPLEXITY OF THE CLASS OF MODELS OF FIRST-ORDER THEORIES [J].
Andrews, Uri ;
Gonzalez, David ;
Lempp, Steffen ;
Rossegger, Dino ;
Zhu, Hongyu .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (09) :4013-4024
[45]   The second-order version of Morley’s theorem on the number of countable models does not require large cardinals [J].
Franklin D. Tall ;
Jing Zhang .
Archive for Mathematical Logic, 2024, 63 :483-490
[46]   The second-order version of Morley's theorem on the number of countable models does not require large cardinals [J].
Tall, Franklin D. ;
Zhang, Jing .
ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) :483-490