Benchmarking State-of-the-Art Deep Learning Software Tools

被引:0
|
作者
Shi, Shaohuai [1 ]
Wang, Qiang [1 ]
Xu, Pengfei [1 ]
Chu, Xiaowen [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD) | 2016年
关键词
Deep Learning; GPU; Feed-forward Neural Networks; Convolutional Neural Networks; Recurrent Neural Networks;
D O I
10.1109/CCBD.2016.33
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been shown as a successful machine learning method for a variety of tasks, and its popularity results in numerous open-source deep learning software tools coming to public. Training a deep network is usually a very time-consuming process. To address the huge computational challenge in deep learning, many tools exploit hardware features such as multi-core CPUs and many-core GPUs to shorten the training and inference time. However, different tools exhibit different features and running performance when they train different types of deep networks on different hardware platforms, making it difficult for end users to select an appropriate pair of software and hardware. In this paper, we present our attempt to benchmark several state-of-the-art GPU-accelerated deep learning software tools, including Caffe, CNTK, TensorFlow, and Torch. We focus on evaluating the running time performance (i.e., speed) of these tools with three popular types of neural networks on two representative CPU platforms and three representative GPU platforms. Our contribution is two-fold. First, for end users of deep learning software tools, our benchmarking results can serve as a reference to selecting appropriate hardware platforms and software tools. Second, for developers of deep learning software tools, our in-depth analysis points out possible future directions to further optimize the running performance.
引用
收藏
页码:99 / 104
页数:6
相关论文
共 50 条
  • [1] State-of-the-art review on deep learning in medical imaging
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Saba, Luca
    Edla, Damodar Reddy
    Suri, Harman S.
    Cuadrado-Godia, Elisa
    Laird, John R.
    Marinhoe, Rui Tato
    Sanches, Joao M.
    Nicolaides, Andrew
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 392 - 426
  • [2] The Fusion of Deep Learning and Fuzzy Systems: A State-of-the-Art Survey
    Zheng, Yuanhang
    Xu, Zeshui
    Wang, Xinxin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 2783 - 2799
  • [3] Deep Learning for Brain Tumor Segmentation: A Survey of State-of-the-Art
    Magadza, Tirivangani
    Viriri, Serestina
    JOURNAL OF IMAGING, 2021, 7 (02)
  • [4] State-of-the-art skin disease classification: a review of deep learning models
    Jaiyeoba, Oluwayemisi
    Ogbuju, Emeka
    Ataguba, Grace
    Jaiyeoba, Oluwaseyi
    Omaye, James Daniel
    Eze, Innocent
    Oladipo, Francisca
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2025, 14 (01):
  • [5] Deep Learning Framework for Speech Emotion Classification: A Survey of the State-of-the-Art
    Akinpelu, Samson
    Viriri, Serestina
    IEEE ACCESS, 2024, 12 : 152152 - 152182
  • [6] State-of-the-Art Deep Learning in Cardiovascular Image Analysis
    Litjens, Geert
    Ciompi, Francesco
    Wolterink, Jelmer M.
    de Vos, Bob D.
    Leiner, Tim
    Teuwen, Jonas
    Isgum, Ivana
    JACC-CARDIOVASCULAR IMAGING, 2019, 12 (08) : 1549 - 1565
  • [7] A State-of-the-Art Survey on Deep Learning Theory and Architectures
    Alom, Md Zahangir
    Taha, Tarek M.
    Yakopcic, Chris
    Westberg, Stefan
    Sidike, Paheding
    Nasrin, Mst Shamima
    Hasan, Mahmudul
    Van Essen, Brian C.
    Awwal, Abdul A. S.
    Asari, Vijayan K.
    ELECTRONICS, 2019, 8 (03)
  • [8] Review of State-of-the-Art in Deep Learning Artificial Intelligence
    Shakirov V.V.
    Solovyeva K.P.
    Dunin-Barkowski W.L.
    Optical Memory and Neural Networks, 2018, 27 (2) : 65 - 80
  • [9] Deep learning and the electrocardiogram: review of the current state-of-the-art
    Somani, Sulaiman
    Russak, Adam J.
    Richter, Felix
    Zhao, Shan
    Vaid, Akhil
    Chaudhry, Fayzan
    De Freitas, Jessica K.
    Naik, Nidhi
    Miotto, Riccardo
    Nadkarni, Girish N.
    Narula, Jagat
    Argulian, Edgar
    Glicksberg, Benjamin S.
    EUROPACE, 2021, 23 (08): : 1179 - 1191
  • [10] Review the state-of-the-art technologies of semantic segmentation based on deep learning
    Mo, Yujian
    Wu, Yan
    Yang, Xinneng
    Liu, Feilin
    Liao, Yujun
    NEUROCOMPUTING, 2022, 493 : 626 - 646