The partial derivative-dressing method and the solutions with constant asymptotic values at infinity of DS-II equation

被引:5
作者
Dubrovsky, VG
机构
[1] UNIV LECCE,DIPARTIMENTO FIS,I-73100 LECCE,ITALY
[2] NOVOSIBIRSK STATE UNIV,NOVOSIBIRSK 630092,RUSSIA
关键词
D O I
10.1063/1.532218
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several classes of exact solutions with constant asymptotic values at infinity of DS-II equation are constructed via the partial derivative-dressing method. Among these solutions are the solutions with functional parameters, multi-line solitons and breathers, and pure rational solutions, (C) 1997 American Institute of Physics.
引用
收藏
页码:6382 / 6400
页数:19
相关论文
共 26 条
[1]   NONLINEAR EVOLUTION EQUATIONS - 2 AND 3 DIMENSIONS [J].
ABLOWITZ, MJ ;
HABERMAN, R .
PHYSICAL REVIEW LETTERS, 1975, 35 (18) :1185-1188
[2]   SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES [J].
ANKER, D ;
FREEMAN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :529-540
[3]   INVERSE SCATTERING TRANSFORM METHOD AND SOLITON-SOLUTIONS FOR DAVEY-STEWARTSON-II EQUATION [J].
ARKADIEV, VA ;
POGREBKOV, AK ;
POLIVANOV, MC .
PHYSICA D, 1989, 36 (1-2) :189-197
[4]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P377
[5]   THE NON-LOCAL PARTIAL-DIFFERENTIAL-EQUATION PROBLEM AND (2+1)-DIMENSIONAL SOLITON-EQUATIONS [J].
BOGDANOV, LV ;
MANAKOV, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :L537-L544
[6]  
BOGDANOV LV, 1987, TEOR MAT FIZ, V72
[7]  
CALOGERO F, 1991, INTEGRABILITY, P1
[8]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[9]   The application of the partial derivative-dressing method to some integrable (2+1)-dimensional nonlinear equations [J].
Dubrovsky, VG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3617-3630
[10]   THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS [J].
FOKAS, AS ;
ZAKHAROV, VE .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :109-134