Formation mechanisms of surfaces for osseointegration on titanium using pulsed laser spattering

被引:14
作者
Frostevarg, Jan [1 ]
Olsson, Rickard [1 ,2 ]
Powell, John [2 ]
Palmquist, Anders [3 ]
Branemark, Rickard [4 ]
机构
[1] Lulea Univ Technol, Dept Mfg Syst Engn, SE-97187 Lulea, Sweden
[2] Laser Nova AB, SE-83148 Ostersund, Sweden
[3] Univ Gothenburg, Dept Biomat, Gothenburg, Sweden
[4] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA USA
关键词
Osseointegration; Titanium; Laser; Surface; Spatter; BioHelix; ALLOY TI-6AL-4V; BONE RESPONSE; IMPLANT; OXIDATION; CELL;
D O I
10.1016/j.apsusc.2019.04.187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accelerated bone grow (osseointegration) can be achieved by modifying the surface of medical implants. For this purpose, pulsed lasers can be used to successfully texture such beneficial surfaces on titanium, e.g. a BioHelix (TM) structure. This surface typically includes ridges and droplets with a size range between 1 and 20 mu m. This paper presents the results of an experimental program where a range of laser parameters was used to create different surface textures on titanium substrates, using pulsed laser spattering. The resultant surfaces are analysed by scanning electron microscope and X-ray Micro Computer Tomography. It is shown that optimisation of the laser parameters results in a robust process which produces a surface that has proven to be beneficial for osseointegration. The results are also deeper analysed, explaining how different types of surface are created by the laser-material interaction under different conditions. Further, droplet flight distances and the formation of the spongeous nano-scale surface that characterizes the surface structure depends on very fast cooling and is also evaluated.
引用
收藏
页码:158 / 169
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 2016, LASER SURFACE MODIFI, DOI DOI 10.1016/B978-0-08-100883-6.00006-X
[2]   Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers [J].
Antonczak, Arkadiusz J. ;
Skowronski, Lukasz ;
Trzcinski, Marek ;
Kinzhybalo, Vasyl V. ;
Lazarek, Lukasz K. ;
Abramski, Krzysztof M. .
APPLIED SURFACE SCIENCE, 2015, 325 :217-226
[3]  
BRAILOVSKY AB, 1995, APPL PHYS A-MATER, V61, P81, DOI 10.1007/BF01538216
[4]  
Branemark P-I., 1977, Scand J Plast Reconstr Surg Suppl, V16
[5]   Bone response to laser-induced micro- and nano-size titanium surface features [J].
Branemark, Rickard ;
Emanuelsson, Lena ;
Palmquist, Anders ;
Thomsen, Peter .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (02) :220-227
[6]   Wetting behaviour of femtosecond laser textured Ti-6Al-4V surfaces [J].
Cunha, Alexandre ;
Serro, Ana Paula ;
Oliveira, Vitor ;
Almeida, Amelia ;
Vilar, Rui ;
Durrieu, Marie-Christine .
APPLIED SURFACE SCIENCE, 2013, 265 :688-696
[7]   Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications [J].
de Damborenea, Juan J. ;
Larosa, Maria Aparecida ;
Angeles Arenas, Maria ;
Manuel Hernandez-Lopez, Juan ;
Jardini, Andre Luiz ;
Ierardi, Maria Clara F. ;
Zavaglia, Cecilia A. C. ;
Maciel Filho, Rubens ;
Conde, Ana .
MATERIALS & DESIGN, 2015, 83 :6-13
[8]   Where bone meets implant: the characterization of nano-osseointegration [J].
Grandfield, Kathryn ;
Gustafsson, Stefan ;
Palmquist, Anders .
NANOSCALE, 2013, 5 (10) :4302-4308
[9]   Structure formation on titanium during oxidation induced by cumulative pulsed Nd:YAG laser irradiation [J].
György, E ;
del Pino, AP ;
Serra, P ;
Morenza, JL .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (05) :765-770
[10]   Surface nitridation of titanium by pulsed Nd:YAG laser irradiation [J].
György, E ;
del Pino, AP ;
Serra, P ;
Morenza, JL .
APPLIED SURFACE SCIENCE, 2002, 186 (1-4) :130-134