Laurent phenomenon algebras arising from surfaces II: Laminated surfaces

被引:1
作者
Wilson, Jon [1 ]
机构
[1] Eberhard Karls Univ Tubingen, Dept Math, Morgenstelle 10, D-72076 Tubingen, Germany
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
CLUSTER ALGEBRAS;
D O I
10.1007/s00029-020-00591-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It was shown by Fock and Goncharov (Dual Teichmuller and lamination spaces. Handbook of Teichmuller Theory, 2007), and Fomin et al. (Acta Math 201(1):83-146, 2008) that some cluster algebras arise from triangulated orientable surfaces. Subsequently, Dupont and Palesi (J Algebraic Combinatorics 42(2):429-472, 2015) generalised this construction to include unpunctured non-orientable surfaces, giving birth to quasi-cluster algebras. In Wilson (Int Math Res Notices 341, 2017) we linked this framework to Lam and Pylyavskyy's Laurent phenomenon algebras (J Math 4(1):121-162, 2016), showing that unpunctured surfaces admit an LP structure. In this paper we extend quasi-cluster algebras to include punctured surfaces. Moreover, by adding laminations to the surface we demonstrate that all punctured and unpunctured surfaces admit LP structures. In short, we link two constructions which arose as seemingly unrelated generalisations of cluster algebras-one of the generalisations (quasi-cluster algebras) being based on triangulated surfaces, and the other (Laurent phenomenon algebras) based on the Laurent phenomenon. We thus provide a rich class of geometric examples in which to help study Laurent phenomenon algebras.
引用
收藏
页数:53
相关论文
共 14 条
[1]  
[Anonymous], 2007, HDB TEICHMULLER THEO
[2]   Quasi-cluster algebras from non-orientable surfaces [J].
Dupont, Gregoire ;
Palesi, Frederic .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (02) :429-472
[3]  
Farb B., 2011, A Primer on Mapping Class Groups
[4]   The Laurent phenomenon [J].
Fomin, S ;
Zelevinsky, A .
ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (02) :119-144
[5]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[6]  
Fomin S, 2018, CLUSTER ALGEBRAS T 2
[7]   Cluster algebras and triangulated surfaces. Part I: Cluster complexes [J].
Fomin, Sergey ;
Shapiro, Michael ;
Thurston, Dylan .
ACTA MATHEMATICA, 2008, 201 (01) :83-146
[8]   STABILITY OF THE HOMOLOGY OF THE MAPPING CLASS-GROUPS OF ORIENTABLE SURFACES [J].
HARER, JL .
ANNALS OF MATHEMATICS, 1985, 121 (02) :215-249
[9]   Laurent phenomenon algebras [J].
Lam, Thomas ;
Pylyavskyy, Pavlo .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (01) :121-162
[10]  
MOSHER L, 1988, T AM MATH SOC, V306, P1