Quantum Chemical Studies on Solvents for Post-Combustion Carbon Dioxide Capture: Calculation of pKa and Carbamate Stability of Disubstituted Piperazines

被引:6
|
作者
Gangarapu, Satesh [1 ]
Wierda, Gerben J. [1 ]
Marcelis, Antonius T. M. [1 ]
Zuilhof, Han [1 ,2 ]
机构
[1] Wageningen Univ, Organ Chem Lab, NL-6703 HB Wageningen, Netherlands
[2] King Abdulaziz Univ, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia
关键词
amines; carbon dioxide; green chemistry; post-combustion capture; quantum chemistry; STERICALLY HINDERED AMINES; CO2; CAPTURE; AQUEOUS PIPERAZINE; PILOT-PLANT; ABSORPTION; PERFORMANCE; TECHNOLOGY; CONSTANTS; ACIDS; FIELD;
D O I
10.1002/cphc.201301217
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piperazine is a widely studied solvent for post-combustion carbon dioxide capture. To investigate the possibilities of further improving this process, the electronic and steric effects of -CH3, -CH2F, -CH2OH, -CH2NH2, -COCH3, and -CN groups of 2,5-disubstituted piperazines on the pK(a) and carbamate stability towards hydrolysis are investigated by quantum chemical methods. For the calculations, B3LYP, M11L, and spin-component-scaled MP2 (SCS-MP2) methods are used and coupled with the SMD solvation model. The experimental pKa values of piperazine, 2-methylpiperazine, and 2,5-dimethylpiperazine agree well with the calculated values. The present study indicates that substitution of -CH3, -CH2NH2, and -CH2OH groups on the 2-and 5-positions of piperazine has a positive impact on the CO2 absorption capacity by reducing the carbamate stability towards hydrolysis. Furthermore, their higher boiling points, relative to piperazine itself, will lead to a reduction of volatility-related losses.
引用
收藏
页码:1880 / 1886
页数:7
相关论文
共 50 条
  • [1] The Advances of Post-Combustion CO2 Capture with Chemical Solvents: Review and Guidelines
    Wu, Xiaomei
    Yu, Yunsong
    Qin, Zhen
    Zhang, Zaoxiao
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1339 - 1346
  • [2] Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials
    Lee, Zhi Hua
    Lee, Keat Teong
    Bhatia, Subhash
    Mohamed, Abdul Rahman
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (05) : 2599 - 2609
  • [3] Amine reclaiming technologies in post-combustion carbon dioxide capture
    Wang, Tielin
    Hovland, Jon
    Jens, Klaus J.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2015, 27 : 276 - 289
  • [4] Pilot plant experiments for two new amine solvents for post-combustion carbon dioxide capture
    von Harbou, Inga
    Mangalapally, Hari Prasad
    Hasse, Hans
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 18 : 305 - 314
  • [5] Absorption and regeneration studies of chemical solvents based on dimethylethanolamine and diethylethanolamine for carbon dioxide capture
    Baltar, Alberto
    Gomez-Diaz, Diego
    Navaza, Jose M.
    Rumbo, Antonio
    AICHE JOURNAL, 2020, 66 (01)
  • [6] Post-combustion carbon capture process modeling, simulation, and assessment of synergistic effect of solvents
    Alalaiwat, Dalal
    Khan, Ezzat
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2024, 135
  • [7] Multicriterial analysis of post-combustion carbon dioxide capture using alkanolamines
    Padurean, Anamaria
    Cormos, Calin-Cristian
    Cormos, Ana-Maria
    Agachi, Paul-Serban
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (04) : 676 - 685
  • [8] Selection and pilot plant tests of new absorbents for post-combustion carbon dioxide capture
    Notz, R.
    Asprion, N.
    Clausen, I.
    Hasse, H.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A4) : 510 - 515
  • [9] Comparison of solvents for post-combustion capture of CO2 by chemical absorption
    Kothandaraman, Anusha
    Nord, Lars
    Bolland, Olav
    Herzog, Howard J.
    McRae, Gregory J.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1373 - 1380
  • [10] Pilot plant study of four new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to MEA
    Mangalapally, Hari Prasad
    Notz, Ralf
    Asprion, Norbert
    Sieder, Georg
    Garcia, Hugo
    Hasse, Hans
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 8 : 205 - 216