Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3

被引:271
作者
Jamali, Mandi [1 ]
Lee, Joon Sue [2 ]
Jeong, Jong Seok [3 ]
Mahfouzi, Farzad [4 ]
Lv, Yang [1 ]
Zhao, Zhengyang [1 ]
Nikolic, Branislav K. [5 ]
Mkhoyan, K. Andre [3 ]
Samarth, Nitin [2 ]
Wang, Jian-Ping [1 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[4] Calif State Univ Northridge, Dept Phys, Northridge, CA 91330 USA
[5] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Topological-insulator/ferromagnet heterostructures; spin pumping; spin Hall effect; interfacial spin-orbit coupling; interface intermixing; TEM; ferromagnetic resonance; spintronics; ELECTRICAL DETECTION; ROOM-TEMPERATURE; MAGNETORESISTANCE; MAGNETIZATION; POLARIZATION; SPINTRONICS; CONDUCTION; TRANSPORT; TORQUE; FILMS;
D O I
10.1021/acs.nanolett.5b03274
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width. Theoretical modeling of spin pumping through the surface of Bi2Se3, as well as of the measured angular dependence of spin-charge conversion signal, suggests that pumped spin current is first greatly enhanced by the surface SOC and then converted into a dc-voltage signal primarily by the inverse spin Hall effect due to SOC of the bulk of Bi2Se3. We find that the FMR line width broadens significantly (more than a factor of 5) and we deduce a spin Hall angle as large as 0.43 in the Bi2Se3 layer.
引用
收藏
页码:7126 / 7132
页数:7
相关论文
共 53 条
[1]  
Ando K, 2011, NAT MATER, V10, P655, DOI [10.1038/nmat3052, 10.1038/NMAT3052]
[2]   Inverse spin-Hall effect in palladium at room temperature [J].
Ando, K. ;
Saitoh, E. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
[3]   Observation of the inverse spin Hall effect in silicon [J].
Ando, Kazuya ;
Saitoh, Eiji .
NATURE COMMUNICATIONS, 2012, 3
[4]   Challenges for semiconductor spintronics [J].
Awschalom, David D. ;
Flatte, Michael E. .
NATURE PHYSICS, 2007, 3 (03) :153-159
[5]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[6]   Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures [J].
Baker, A. A. ;
Figueroa, A. I. ;
Collins-McIntyre, L. J. ;
van der Laan, G. ;
Hesjedal, T. .
SCIENTIFIC REPORTS, 2015, 5
[7]   NOVEL MAGNETORESISTANCE EFFECT IN LAYERED MAGNETIC-STRUCTURES - THEORY AND EXPERIMENT [J].
BARNAS, J ;
FUSS, A ;
CAMLEY, RE ;
GRUNBERG, P ;
ZINN, W .
PHYSICAL REVIEW B, 1990, 42 (13) :8110-8120
[8]  
Beidenkopf H, 2011, NAT PHYS, V7, P939, DOI [10.1038/NPHYS2108, 10.1038/nphys2108]
[9]   ELECTRICAL AND OPTICAL PROPERTIES OF SOME M2V-BN3VI-B SEMICONDUCTORS [J].
BLACK, J ;
CONWELL, EM ;
SEIGLE, L ;
SPENCER, CW .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1957, 2 (03) :240-251
[10]  
Chang P.-H., 2015, ARXIV150308046