Mesh type tradeoffs in 2D hydrodynamic modeling of flooding with a Godunov-based flow solver

被引:94
作者
Kim, Byunghyun [1 ,2 ]
Sanders, Brett F. [1 ,2 ]
Schubert, Jochen E. [1 ,2 ]
Famiglietti, James S. [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Ctr Hydrol Modeling, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Flooding; Finite volume model; Mesh design; Unstructured grid; Cartesian grid; Porosity; SHALLOW-WATER-EQUATIONS; DISCONTINUOUS-GALERKIN METHOD; FINITE-VOLUME ALGORITHM; SLOPE SOURCE-TERM; DAM-BREAK; HIGH-RESOLUTION; INUNDATION MODELS; NUMERICAL-MODEL; DIVERGENCE FORM; SIMULATION;
D O I
10.1016/j.advwatres.2014.02.013
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The effect of mesh type on the accuracy and computational demands of a two-dimensional Godunov-type flood inundation model is critically examined. Cartesian grids, constrained and unconstrained triangular grids, constrained quadrilateral grids, and mixed meshes are considered, with and without local time stepping (LTS), to determine the approach that maximizes computational efficiency defined as accuracy relative to computational effort. A mixed-mesh numerical scheme is introduced so all grids are processed by the same solver. Analysis focuses on a wide range of dam-break type test cases, where Godunov-type flood models have proven very successful. Results show that different mesh types excel under different circumstances. Cartesian grids are 2-3 times more efficient with relatively simple terrain features such as rectilinear channels that call for a uniform grid resolution, while unstructured grids are about twice as efficient in complex domains with irregular terrain features that call for localized refinements. The superior efficiency of locally refined, unstructured grids in complex terrain is attributable to LTS; the locally refined unstructured grid becomes less efficient using global time stepping. These results point to mesh-type tradeoffs that should be considered in flood modeling applications. A mixed mesh model formulation with LTS is recommended as a general purpose solver because the mesh type can be adapted to maximize computational efficiency. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 61
页数:20
相关论文
共 87 条
[1]   Modelling flash flood propagation in urban areas using a two-dimensional numerical model [J].
Abderrezzak, Kamal El Kadi ;
Paquier, Andre ;
Mignot, Emmanuel .
NATURAL HAZARDS, 2009, 50 (03) :433-460
[2]   A discontinuous Galerkin method for two-dimensional flow and transport in shallow water [J].
Aizinger, V ;
Dawson, C .
ADVANCES IN WATER RESOURCES, 2002, 25 (01) :67-84
[3]   A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS [J].
ALCRUDO, F ;
GARCIANAVARRO, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 16 (06) :489-505
[4]   MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes [J].
Arico, C. ;
Sinagra, M. ;
Begnudelli, L. ;
Tucciarelli, T. .
ADVANCES IN WATER RESOURCES, 2011, 34 (11) :1427-1449
[5]   Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling [J].
Bates, Paul D. ;
Wilson, Matthew D. ;
Horritt, Matthew S. ;
Mason, David C. ;
Holden, Nick ;
Currie, Anthony .
JOURNAL OF HYDROLOGY, 2006, 328 (1-2) :306-318
[6]   Integrating remote sensing data with flood inundation models: how far have we got? [J].
Bates, Paul D. .
HYDROLOGICAL PROCESSES, 2012, 26 (16) :2515-2521
[7]   Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying [J].
Begnudelli, L ;
Sanders, BF .
JOURNAL OF HYDRAULIC ENGINEERING, 2006, 132 (04) :371-384
[8]   Adaptive Godunov-based model for flood simulation [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. ;
Bradford, Scott F. .
JOURNAL OF HYDRAULIC ENGINEERING, 2008, 134 (06) :714-725
[9]   Simulation of the St. Francis dam-break flood [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2007, 133 (11) :1200-1212
[10]   Conservative wetting and drying methodology for quadrilateral grid finite-volume models [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2007, 133 (03) :312-322