Quantum bright solitons in a quasi-one-dimensional optical lattice

被引:13
作者
Barbiero, Luca [1 ,2 ]
Salasnich, Luca [1 ,2 ,3 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy
[2] Univ Padua, CNISM, I-35131 Padua, Italy
[3] CNR, INO, Sez Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 06期
关键词
SUPERFLUID; INSULATOR;
D O I
10.1103/PhysRevA.89.063605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study a quasi-one-dimensional attractive Bose gas confined in an optical lattice with a superimposed harmonic potential by analyzing the one-dimensional Bose-Hubbard Hamiltonian of the system. Starting from the three-dimensional many-body quantum Hamiltonian, we derive strong inequalities involving the transverse degrees of freedom under which the one-dimensional Bose-Hubbard Hamiltonian can be safely used. To have a reliable description of the one-dimensional ground state, which we call a quantum bright soliton, we use the density-matrix-renormalization-group (DMRG) technique. By comparing DMRG results with mean-field (MF) ones, we find that beyond-mean-field effects become relevant by increasing the attraction between bosons or by decreasing the frequency of the harmonic confinement. In particular, we find that, contrary to the MF predictions based on the discrete nonlinear Schrodinger equation, average density profiles of quantum bright solitons are not shape-invariant. We also use the time-evolving-block-decimation method to investigate the dynamical properties of bright solitons when the frequency of the harmonic potential is suddenly increased. This quantum quench induces a breathing mode whose period crucially depends on the final strength of the superimposed harmonic confinement.
引用
收藏
页数:5
相关论文
共 40 条
[1]   Dipolar-induced resonance for ultracold bosons in a quasi-one-dimensional optical lattice [J].
Bartolo, N. ;
Papoular, D. J. ;
Barbiero, L. ;
Menotti, C. ;
Recati, A. .
PHYSICAL REVIEW A, 2013, 88 (02)
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   COMPARISON BETWEEN EXACT AND HARTREE SOLUTIONS OF A ONE-DIMENSIONAL MANY-BODY PROBLEM [J].
CALOGERO, F ;
DEGASPERIS, A .
PHYSICAL REVIEW A, 1975, 11 (01) :265-269
[4]   Spontaneous soliton formation and modulational instability in Bose-Einstein condensates [J].
Carr, LD ;
Brand, J .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[5]   Bose-Einstein condensates in symmetry breaking states [J].
Castin, Y ;
Herzog, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (03) :419-443
[6]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[7]   Oscillation frequencies for a Bose condensate in a triaxial magnetic trap [J].
Cerboneschi, E ;
Mannella, R ;
Arimondo, E ;
Salasnich, L .
PHYSICS LETTERS A, 1998, 249 (5-6) :495-500
[8]   Light-cone-like spreading of correlations in a quantum many-body system [J].
Cheneau, Marc ;
Barmettler, Peter ;
Poletti, Dario ;
Endres, Manuel ;
Schauss, Peter ;
Fukuhara, Takeshi ;
Gross, Christian ;
Bloch, Immanuel ;
Kollath, Corinna ;
Kuhr, Stefan .
NATURE, 2012, 481 (7382) :484-487
[9]   Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates [J].
Cornish, SL ;
Thompson, ST ;
Wieman, CE .
PHYSICAL REVIEW LETTERS, 2006, 96 (17)
[10]   Many-Body Matter-Wave Dark Soliton [J].
Delande, Dominique ;
Sacha, Krzysztof .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)