Parisian Option Pricing: A Recursive Solution for the Density of the Parisian Stopping Time

被引:11
作者
Dassios, Angelos [1 ]
Lim, Jia Wei [1 ]
机构
[1] London Sch Econ, Dept Stat, London WC2A 2AE, England
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2013年 / 4卷 / 01期
关键词
Parisian option; Brownian excursion; Volterra equation; BROWNIAN EXCURSIONS; BARRIER OPTIONS;
D O I
10.1137/120875466
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we obtain the density function of the single barrier one-sided Parisian stopping time. The problem reduces to that of solving a Volterra integral equation of the first kind, where a recursive solution is consequently obtained. The advantage of this new method as compared to that in previous literature is that the recursions are easy to program as the resulting formula involves only a finite sum and does not require a numerical inversion of the Laplace transform. For long window periods, an explicit formula for the density of the stopping time can be obtained. For shorter window lengths, we derive a recursive equation from which numerical results are computed. From these results, we compute the prices of one-sided Parisian options.
引用
收藏
页码:599 / 615
页数:17
相关论文
共 10 条
  • [1] Abate J., 1995, ORSA Journal on Computing, V7, P36, DOI 10.1287/ijoc.7.1.36
  • [2] Double-sided Parisian option pricing
    Anderluh, J. H. M.
    van der Weide, J. A. M.
    [J]. FINANCE AND STOCHASTICS, 2009, 13 (02) : 205 - 238
  • [3] Avellaneda M., 1999, INT J THEOR APPL FIN, V2, P1, DOI 10.1142/S0219024999000029
  • [4] Bernard C., 2005, J DERIV, V12, P45
  • [5] Brownian excursions and Parisian barrier options
    Chesney, M
    JeanblancPicque, M
    Yor, M
    [J]. ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) : 165 - 184
  • [6] EXCURSIONS IN BROWNIAN-MOTION
    CHUNG, KL
    [J]. ARKIV FOR MATEMATIK, 1976, 14 (02): : 155 - 177
  • [7] Perturbed Brownian motion and its application to Parisian option pricing
    Dassios, Angelos
    Wu, Shanle
    [J]. FINANCE AND STOCHASTICS, 2010, 14 (03) : 473 - 494
  • [8] Haber R., 1999, J DERIV, V6, P71, DOI DOI 10.3905/JOD.1999.319120
  • [9] PRICING DOUBLE BARRIER PARISIAN OPTIONS USING LAPLACE TRANSFORMS
    Labart, Celine
    Lelong, Jerome
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (01) : 19 - 44
  • [10] Brownian excursions and Parisian barrier options:: A note
    Schröder, M
    [J]. JOURNAL OF APPLIED PROBABILITY, 2003, 40 (04) : 855 - 864