A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion

被引:54
|
作者
Eun, Youngkee [1 ]
Kwon, Dae-Sung [1 ]
Kim, Min-Ook [1 ]
Yoo, Ilseon [1 ]
Sim, Jaesam [1 ]
Ko, Hee-Jin [1 ]
Cho, Kyung-Ho [2 ]
Kim, Jongbaeg [1 ]
机构
[1] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
[2] Agcy Def Dev, Taejon 305152, South Korea
关键词
hybrid energy harvester; strain energy harvesting; piezoelectric; electrostatic; NANOGENERATOR; ELECTRICITY; GENERATION;
D O I
10.1088/0964-1726/23/4/045040
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A new design of flexible energy harvester to utilize piezoelectric and electrostatic energy conversion mechanisms simultaneously from a single mechanical energy source is proposed. This non-resonant type harvester enables low-frequency mechanical inputs to be converted to electricity, and the polymeric structures make the harvester mechanically flexible, allowing it to be applied to non-planar surfaces. The fabricated harvester generated peak-and average power densities of 159 and 1.79 mu W cm(-2) respectively by piezoelectric conversion, and 52.9 mu W cm(-2) and 1.59 nW cm(-2) respectively by electrostatic conversion from an input force of 1.2 N at 3 Hz. Considering its flexibility and ability to harvest mechanical inputs at frequencies below 3 Hz, low-frequency human movements could be a potential energy source for the proposed hybrid harvester to exploit.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Electrohydrodynamically Printed, Flexible Energy Harvester Using In Situ Poled Piezoelectric Nanofibers
    Ding, Yajing
    Duan, Yongqing
    Huang, YongAn
    ENERGY TECHNOLOGY, 2015, 3 (04) : 351 - 358
  • [22] A micromachined energy harvester from a keyboard using combined electromagnetic and piezoelectric conversion
    Wacharasindhu, T.
    Kwon, J. W.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (10)
  • [23] Frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling
    Feng, Yue
    Zhou, Zilong
    Luo, Haosun
    Wang, Ruiguo
    Han, Yanhui
    Xiong, Ying
    IET NANODIELECTRICS, 2023, 6 (02) : 46 - 56
  • [24] Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms
    Pyo, Soonjae
    Kwon, Dae-Sung
    Ko, Hee-Jin
    Eun, Youngkee
    Kim, Jongbaeg
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2022, 9 (01) : 241 - 251
  • [25] A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms
    Wang, Hong-yan
    Tang, Li-hua
    Guo, Yuan
    Shan, Xiao-biao
    Xie, Tao
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2014, 15 (09): : 711 - 722
  • [26] Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms
    Soonjae Pyo
    Dae-Sung Kwon
    Hee-Jin Ko
    Youngkee Eun
    Jongbaeg Kim
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9 : 241 - 251
  • [27] Design and analysis of a vibration energy harvester using push-pull electrostatic conversion
    Erturun, Ugur
    Eisape, Adebayo
    West, James E.
    SMART MATERIALS AND STRUCTURES, 2020, 29 (10)
  • [28] A wearable energy harvester unit using piezoelectric-electromagnetic hybrid technique
    Hamid, Rawnak
    Yuce, Mehmet Rasit
    SENSORS AND ACTUATORS A-PHYSICAL, 2017, 257 : 198 - 207
  • [29] Enhancement of vibration based piezoelectric energy harvester using hybrid optimization techniques
    P. Mangaiyarkarasi
    P. Lakshmi
    V. Sasrika
    Microsystem Technologies, 2019, 25 : 3791 - 3800
  • [30] Modeling and Experimental Verification of a Hybrid Energy Harvester Using Piezoelectric and Electromagnetic Technologies
    Xu, Zhen Long
    Wang, Xiao Xi
    Shan, Xiao Biao
    Xie, Tao
    ADVANCED MATERIALS DESIGN AND MECHANICS, 2012, 569 : 529 - 532